Svar:
De mødes efter
Forklaring:
Tiden, der tages af begge tog, indtil de mødes, vil være de samme.
Lad denne gang være
Træn A:
Tog B:
Summen af den tilbagelagte afstand er
De mødes efter
Kontrollere:
Tog En rejse:
Tog B rejser:
Tog A forlader en station 1/2 time før tog B. Togene kører på parallelle spor. Tog En rejse på 25 km / h, mens tog B rejser ved 25 km / t, hvor mange timer vil det tage tog B at overtage tog A?
@Alan P. er korrekt. Hvis togene kører i samme retning med samme hastighed, vil det andet tog aldrig overvinde det første.
To både forlader en havn på samme tid, den ene går nordpå, den anden rejser sydpå. Den nordgående båd rejser 18 mph hurtigere end den sydgående båd. Hvis den sydgående båd rejser på 52 km / t, hvor lang tid vil det være før de er 1586 miles fra hinanden?
Sydgående bådhastighed er 52 mph. Nordgående bådhastighed er 52 + 18 = 70mph. Da afstand er hastighed x tid lad tid = t Så: 52t + 70t = 1586 opløsning for t 122t = 1586 => t = 13 t = 13 timer Check: Southbound (13) (52) = 676 Northbound (13) (70) = 910 676 + 910 = 1586
To skibe, der forlader samme havn på samme tid, er 3,2 miles fra hinanden efter sejlads 2,5 timer. Hvis de fortsætter i samme takt og retning, hvor langt fra hinanden vil de være 2 timer senere?
De to skibe vil være 5,76 miles adskilt fra hinanden. Vi kan finde ud af de to fartøjers relative hastigheder baseret på deres afstande efter 2,5 timer: (V_2-V_1) xx2.5 = 3.2 Ovennævnte udtryk giver os forskydning mellem de to skibe som en funktion af forskellen i deres indledende hastigheder . (V_2-V_1) = 3,2 / 2,5 = 32/25 mph Nu når vi kender relativ hastighed, kan vi finde ud af, hvad forskydningen er efter den samlede tid på 2,5 + 2 = 4,5 timer: (V_2-V_1) xx4.5 = x 32 / 25xx9 / 2 = x 288/50 = xx = 576/100 = farve (grøn) (5.76mi) Vi kan bekræfte dette ved kun at gøre 2 timers