Svar:
Forklaring:
Lade
som pr. given tilstand
Og området af rektangel
indstillingsværdi af
Men rektangelets bredde kan ikke være negativ dermed
indstilling
Længden af et rektangel er 5 cm mere end 4 gange bredden. Hvis rektangelområdet er 76 cm ^ 2, hvordan finder du rektangelets dimensioner til nærmeste tusindedel?
Bredde w ~ = 3.7785 cm Længde l ~ = 20.114cm Lad længde = l og bredde = w. Da længden = 5 + 4 (bredde) rArr l = 5 + 4w ........... (1). Område = 76 rArr længde x bredde = 76 rArr lxxw = 76 ........ (2) Sub.ing forl fra (1) i (2) får vi, (5 + 4w) w = 76 rArr 4w ^ 2 + 5w-76 = 0. Vi ved, at nulerne af kvadratisk eqn. : ax ^ 2 + bx + c = 0, er givet ved x = {- b + -sqrt (b ^ 2-4ac)} / (2a). Derfor er w = {- 5 + -sqrt (25-4 * 4 * (- 76))} / 8 = (- 5 + -sqrt (25 + 1216)) / 8 = (- 5 + -sqrt1241) / 8 ~ = (- 5 + -35.2278) / 8 Da w, bredde, kan ikke være -ve, kan vi ikke tage w = (- 5-35.2278) / 8
Længden af et rektangel er 5ft mere end to gange dets bredde, og rektangelets areal er 88ft. Hvordan finder du rektangelets dimensioner?
Længde = 16 fod, Bredde = 11/2 fod. Lad længden og bredden være l fødder, & w fødder, rep. Med hvad der gives, l = 2w + 5 ................ (1). Ved hjælp af formlen: Rektangelareal = længde xx bredde, får vi en anden eqn., L * w = 88 eller ved (1), (2w + 5) * w = 88, dvs. 2w ^ 2 + 5w -88 = 0. For at faktorisere dette bemærker vi, at 2 * 88 = 2 * 8 * 11 = 16 * 11, & 16-11 = 5. Så vi erstatter, 5w ved 16w-11w, for at få, 2w ^ 2 + 16w-11w-88 = 0. :. 2w (w + 8) -11 (w + 8) = 0. :. (W + 8) (2w-11) = 0. :. w = bredde = -8, hvilket ikke er tilladt, w = 11/2. Derefter
Omkredsen af et rektangel er 40. Bredden er fire mindre end 5 gange længden. Hvordan finder du rektangelets dimensioner?
Jeg fandt 16 og 4 I betragtning af dit rektangel: Omkredsen P er summen af de 4 længder: P = 40 = W + W + L + L = 2W + 2L og: 40 = 2 (5L-4) + 2L 40 = 10L -8 + 2L L = 48/12 = 4 Så: W = 5 * 4-4 = 16