Svar:
Tangenter er
Forklaring:
Lad tangens hældning være
Lad os nu se skæringspunktet for denne tangent og den givne kurve
dvs.
eller
Dette skal give to værdier af
eller
eller
dvs.
=
dvs.
og dermed tangenter er
og
graf {(25x-9y + 54) (x-y + 6) (y- (x + 2) / (x + 3)) = 0 -12,58, 7,42, -3,16, 6,84}
Lad P (x_1, y_1) være et punkt og lad l være linjen med ligning ax + ved + c = 0.Vis afstanden d fra P-> l er givet af: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Find afstanden d af punktet P (6,7) fra linjen l med ligning 3x + 4y = 11?
D = 7 Lad l-> a x + b y + c = 0 og p_1 = (x_1, y_1) et punkt ikke på l. Antag at b ne 0 og kalder d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 efter at have erstattet y = - (a x + c) / b til d ^ 2 har vi d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Det næste trin er at finde d ^ 2 minimumet for x, så vi finder x sådan, at d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Dette forekommer for x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Nu erstatter denne værdi i d ^ 2 vi d ^ 2 = + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) så d = (c + a x_1 + b y_1) / sqrt (a ^ 2 + b ^ 2) Nu giv
Lad vec (x) være en vektor, sådan at vec (x) = (-1, 1), "og lad" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], der er Rotation Operatør. For theta = 3 / 4pi find vec (y) = R (theta) vec (x)? Lav en skitse, der viser x, y og θ?
Dette viser sig at være en rotation mod uret. Kan du gætte ved hvor mange grader? Lad T: RR ^ 2 | -> RR ^ 2 være en lineær transformation, hvor T (vecx) = R (theta) vecx, R (theta) = [(costheta, sinteta), (sintheta, costheta)], vecx = << -1,1 >>. Bemærk at denne transformation var repræsenteret som transformationsmatrixen R (theta). Hvad det betyder er, da R er rotationsmatrixen, der repræsenterer rotationstransformationen, kan vi formere R ved vecx for at opnå denne transformation. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >> For en MxxK og
Skriv punkt-skråning form af ligningen med den givne hældning, der passerer gennem det angivne punkt. A.) linjen med hældning -4 passerer gennem (5,4). og også B.) linjen med hældning 2 passerer gennem (-1, -2). Vær venlig at hjælpe, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "ligningen af en linje i" farve (blå) "punkt-skråning form" er. • farve (hvid) (x) y-y_1 = m (x-x_1) "hvor m er hældningen og" (x_1, y_1) "et punkt på linjen" (A) "givet" m = -4 " "(x_1, y_1) = (5,4)" erstatter disse værdier i ligningen giver "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråning form "(B)" givet "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "