Svar:
Forklaring:
For at finde GCF'en af to numre kan du fortsætte som følger:
-
Del det større antal af de mindre for at give en kvotient og resten.
-
Hvis resten er nul, så er det mindre tal GCF.
-
Ellers gentages med mindre nummer og resten.
I vores eksempel:
#245/175 = 1# med resten#70#
#175/70 = 2# med resten#35#
#70/35 = 2# med resten#0#
Så GCF er
De første og andre udtryk for en geometrisk sekvens er henholdsvis de første og tredje udtryk for en lineær sekvens. Den fjerde term af den lineære sekvens er 10, og summen af dens første fem term er 60 Find de første fem udtryk for den lineære sekvens?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan repræsenteres som c0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første element for den geometriske sekvens vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og anden af GS er den første og tredje af en LS"), (c_0a + 3Delta = 10- > "Den fjerde term for den lineære sekvens er 10"), (5c_0a + 10Delta = 60 -> "Summen af dens første fem sigt er 60"):} Løsning for c_0, a, Delta opnår vi c_0 = 64/3 , a = 3/4
Q er midtpunktet for GH¯¯¯¯¯, GQ = 2x + 3 og GH = 5x-5. Hvad er længden af GQ¯¯¯¯¯?
GQ = 25 Da Q er midtpunktet for GH, har vi GQ = QH og GH = GQ + QH = 2xxGQ Nu som GQ = 2x + 3 og GH = 5x-5 har vi 5x-5 = 2xx (2x + 3 ) eller 5x-5 = 4x + 6 eller 5x-4x = 6 + 5 dvs. x = 11 Derfor er GQ = 2xx11 + 3 = 22 + 3 = 25
Du har håndklæder af tre størrelser. Længden af den første er 3/4 m, hvilket udgør 3/5 af længden af den anden. Længden af det tredje håndklæde er 5/12 af summen af længderne af de første to. Hvilken del af den tredje håndklæde er den anden?
Forholdet mellem anden til tredje håndklæde længde = 75/136 Længde af første håndklæde = 3/5 m Længde af andet håndklæde = (5/3) * (3/4) = 5/4 m Summen af de to første håndklæder = 3/5 + 5/4 = 37/20 Længde af det tredje håndklæde = (5/12) * (37/20) = 136/60 = 34/15 m Forholdet mellem anden til tredje håndklæde længde = (5/4 ) / (34/15) = (5 * 15) / (34 * 4) = 75/136