Svar:
Ikke sikker på, om dette er det, du bad om.
Forklaring:
Jeg er ikke sikker på, om jeg forstod dit spørgsmål rigtigt. Vil du tilslutte værdierne for den kvadratiske ligning til den kvadratiske formel?
Først skal du ligestille alt til 0. Du kan starte med at overføre 5 til den anden side.
Multiplicere (2y-3) og (y + 1).
Nu skal du blot tilslutte værdierne for
Hvad er den forbedrede kvadratiske formel i løsning af kvadratiske ligninger?
Den forbedrede kvadratiske formel (Google, Yahoo, Bing Search) De forbedrede kvadratiske formler; D = d ^ 2 = b ^ 2 - 4ac (1) x = -b / (2a) + - d / (2a) (2). I denne formel: - Mængden -b / (2a) repræsenterer x-koordinatet for symmetriaksen. - Mængde + - d / (2a) repræsenterer afstande fra symmetriaksen til 2 x-aflytningerne. Fordele; - Enklere og lettere at huske end den klassiske formel. - Nemmere til beregning, selv med en lommeregner. - Studerende forstår mere om de kvadratiske funktionsfunktioner, såsom: vertex, symmetriakse, x-aflytninger. Klassisk formel: x = -b / (2a) + - (sqrt (b2-4ac)
Hvad er den forbedrede kvadratiske formel til at løse kvadratiske ligninger?
Der er kun en kvadratisk formel, det vil sige x = (- b + -sqrt (b ^ 2-4ac)) / (2a). For en generel løsning af x i økse ^ 2 + bx + c = 0 kan vi udlede den kvadratiske formel x = (- b + -sqrt (b ^ 2-4ac)) / (2a). økse ^ 2 + bx + c = 0 ax ^ 2 + bx = -c 4a ^ 2x ^ 2 + 4abx = -4ac 4a ^ 2x ^ 2 + 4abx + b ^ 2 = b ^ 2-4ac Nu kan du faktorere. (2ax + b) ^ 2 = b ^ 2-4ac 2ax + b = + sqrt (b ^ 2-4ac) 2ax = -b + -sqrt (b ^ 2-4ac): .x = (- b + -sqrt b ^ 2-4ac)) / (2a)
Hvornår har du "ingen løsning", når du løser kvadratiske ligninger ved hjælp af den kvadratiske formel?
Når b ^ 2-4ac i den kvadratiske formel er negativ Bare i tilfælde af at b ^ 2-4ac er negativ, er der ingen løsning i reelle tal. På andre akademiske niveauer vil du studere komplekse tal for at løse disse sager. Men det er en anden historie