Svar:
Forklaring:
Standardformularen for en cirkel med et center på
# (X-h) ^ 2 + (y-k) ^ 2 = r ^ 2 #
Siden centrum er
# {(H = 0), (k = 0), (r = 7):} #
Således er ligningen af cirklen
# (X-0) ^ 2 + (y-0) ^ 2 = 7 ^ 2 #
Dette forenkler at være
# X ^ 2 + y ^ 2 = 49 #
graf {(x ^ 2 + y ^ 2-49) = 0 -16,02, 16,03, -8,01, 8,01}
Du får en cirkel B, hvis center er (4, 3) og et punkt på (10, 3) og en anden cirkel C, hvis center er (-3, -5) og et punkt på denne cirkel er (1, -5) . Hvad er forholdet mellem cirkel B og cirkel C?
3: 2 "eller" 3/2 ", vi har brug for til at beregne radiuserne af cirklerne og sammenligne" "radius er afstanden fra midten til punktet" "på cirklen" "centrum af B" = (4,3 ) "og punktet er" = (10,3) ", da y-koordinaterne er begge 3, så er radius forskellen i x-koordinaterne" rArr "radius af B" = 10-4 = 6 "center af C "= (- 3, -5)" og punkt er "= (1, -5)" y-koordinater er begge - 5 "rArr" radius af C "= 1 - (-3) = 4" forholdet " = (farve (rød) "radius_B") / (farve (rø
Cirkel A har en radius på 2 og et center på (6, 5). Cirkel B har en radius på 3 og et center på (2, 4). Hvis cirkel B oversættes med <1, 1>, overlapper den cirkel A? Hvis ikke, hvad er den mindste afstand mellem point på begge cirkler?
"overlapper hinanden"> "hvad vi skal gøre her er at sammenligne afstanden mellem døgnene og summen af radiuserne" • "hvis summen af radii"> d "så cirklerne overlapper hinanden" • "hvis summen af radi "<d" og derefter ikke overlappe "" før beregningen d "" kræver vi at finde det nye center "" af B efter den givne oversættelse "" under oversættelsen "<1,1> (2,4) til (2 + 1, 4 + 1) til (3,5) larrcolor (rød) "nyt centrum af B" "for at beregne d bruger"
Cirkel A har et center ved (5, -2) og en radius på 2. Cirkel B har et center ved (2, -1) og en radius på 3. Overlapper cirklerne? Hvis ikke, hvad er den mindste afstand mellem dem?
Ja, cirklerne overlapper hinanden. beregne center til center disance Lad P_2 (x_2, y_2) = (5, -2) og P_1 (x_1, y_1) = (2, -1) d = sqrt ((x_2-x_1) ^ 2 + (y_2-y_1 ) ^ 2) d = sqrt ((5-2) ^ 2 + (- 2--1) ^ 2) d = sqrt ((3 ^ 2 + (- 1) ^ 2) d = sqrt10 = 3,16 Beregne summen af radien r_t = r_1 + r_2 = 3 + 2 = 5 r_1 + r_2> d cirklerne overlapper Gud velsigne .... Jeg håber forklaringen er nyttig.