Svar:
Forklaring:
Domænet er sæt værdier af
Domænet er sæt af alle reelle tal undtagen 9.
Domænet for f (x) er sæt af alle reelle værdier undtagen 7, og domænet for g (x) er sætet af alle reelle værdier bortset fra -3. Hvad er domænet for (g * f) (x)?
Alle reelle tal undtagen 7 og -3, når du multiplicerer to funktioner, hvad laver vi? vi tager f (x) -værdien og multiplicerer den med g (x) -værdien, hvor x skal være det samme. Men begge funktioner har begrænsninger, 7 og -3, så produktet af de to funktioner skal have * begge * begrænsninger. Normalt når de har funktioner på funktioner, hvis de tidligere funktioner (f (x) og g (x)) havde begrænsninger, bliver de altid taget som en del af den nye begrænsning af den nye funktion eller deres funktion. Du kan også visualisere dette ved at lave to rationelle funktione
Reuben sælger beaded halskæder. Hver stor halskæde sælger til 5,10 dollar, og hver lille halskæde sælger til 4,60 dollar. Hvor meget vil han tjene på at sælge 1 stor halskæde og 7 små halskæder?
Reuben vil tjene $ 37.30 fra at sælge 1 stort og 7 små halskæder. Lad os lave en formel til beregning af, hvor meget Reuben vil tjene på at sælge halskæder: Lad os først ringe, hvad han vil tjene. Så antallet af store halskæder vi kan ringe l og til store halskæder han sælger, vil han lave l xx $ 5,10. Også antallet af små halskæder vi kan ringe s og til små halskæder han sælger, vil han lave s xx $ 45.60. Vi kan sige dette helt for at få vores formel: e = (l xx $ 5,10) + (s xx $ 4,60) I problemet bliver vi bedt om at beregne for Reub
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1) og x! = - 1, hvad ville f (g (x)) ligestilles med? g (f (x))? f ^ -1 (x)? Hvad ville domænet, rækkevidde og nul for f (x) være? Hvad ville domænet, rækkevidde og nul for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = root () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}