Svar:
Bevis ved modsigelse - se nedenfor
Forklaring:
Vi får at vide det
Antag det
Så
og
Derfor må vi konkludere, at hvis
Hvad er et reelt tal, et helt tal, et helt tal, et rationelt tal og et irrationelt nummer?
Forklaring Nedenfor Rationelle tal kommer i 3 forskellige former; heltal, fraktioner og terminerende eller tilbagevendende decimaler såsom 1/3. Irrationelle tal er ret 'rodet'. De kan ikke skrives som brøker, de er uendelige, ikke-gentagende decimaler. Et eksempel på dette er værdien af π. Et helt tal kan kaldes et helt tal og er enten et positivt eller negativt tal eller nul. Et eksempel på dette er 0, 1 og -365.
Et helt tal er ni mere end to gange et helt helt tal. Hvis produktet af heltalene er 18, hvordan finder du de to heltal?
Løsninger heltal: farve (blå) (- 3, -6) Lad heltalene være repræsenteret af a og b. Vi får at vide: [1] farve (hvid) ("XXX") a = 2b + 9 (Et heltal er ni mere end to gange det andet heltal) og [2] farve (hvid) ("XXX") a xx b = 18 (Produktet af heltalene er 18) Baseret på [1] ved vi, at vi kan erstatte (2b + 9) til en i [2]; giver [3] farve (hvid) ("XXX") (2b + 9) xx b = 18 Forenkling med målet om at skrive dette som standardformular kvadratisk: [5] farve (hvid) ("XXX") 2b ^ 2 + 9b = 18 [6] farve (hvid) ("XXX") 2b ^ 2 + 9b-18 = 0 Du kan brug
Bevis det indirekte, hvis n ^ 2 er et ulige tal og n er et helt tal, så er n et ulige tal?
N er en faktor på n ^ 2. Da et lige antal ikke kan være faktor for et ulige tal, skal n være et ulige tal.