Multiplikation af rationelle udtryk er faktisk meget nemt - meget lettere end at tilføje rationelle udtryk!
Faktisk, hvis du har to rationelle udtryk
Bemærk at dette gælder for enhver form for rationelle udtryk, ikke kun med tal: Hvis du har to fraktioner, der involverer funktioner, fungerer det samme: for eksempel,
De første og andre udtryk for en geometrisk sekvens er henholdsvis de første og tredje udtryk for en lineær sekvens. Den fjerde term af den lineære sekvens er 10, og summen af dens første fem term er 60 Find de første fem udtryk for den lineære sekvens?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan repræsenteres som c0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første element for den geometriske sekvens vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og anden af GS er den første og tredje af en LS"), (c_0a + 3Delta = 10- > "Den fjerde term for den lineære sekvens er 10"), (5c_0a + 10Delta = 60 -> "Summen af dens første fem sigt er 60"):} Løsning for c_0, a, Delta opnår vi c_0 = 64/3 , a = 3/4
Summen af to rationelle tal er -1/2. Forskellen er -11/10. Hvad er de rationelle tal?
De nødvendige rationelle tal er -4/5 og 3/10 Betegner de to rationelle tal med x og y. Fra de givne oplysninger er x + y = -1/2 (ligning 1) og x - y = -11/10 (x Ligning 2) Disse er blot samtidige ligninger med to ligninger og to ukendte, der skal løses ved hjælp af en egnet metode. Ved hjælp af en sådan metode: Tilføjelse af ligning 1 til ligning 2 giver 2x = - 32/20, hvilket indebærer x = -4/5 erstatning i ligning 1 giver -4/5 + y = -1/2, hvilket indebærer y = 3/10 Kontrol i ligning 2 -4/5 - 3/10 = -11/10, som forventet
Hvad er almindeligt anvendte matematiske udtryk, der oversætter til addition, subtraktion, multiplikation og division?
"Sum" for tilføjelse "Forskel" til subtraktion "Produkt" til multiplikation "Quotient" til division Jeg håber, at dette var nyttigt.