Svar:
det er
Forklaring:
Vi kigger efter den periode, der er lettere, da ved vi, at frekvensen er omvendt af perioden.
Vi ved, at perioden for begge
Så kan vi sige det
Med samme idé finder vi det
Forskellen mellem de to gentagelser, når begge mængder gentages.
Efter
Så funktionen har en periode
graf {sin (6x) -koser (2x) -0.582, 4.283, -1.951, 0.478}
Bevis: - synd (7 theta) + synd (5 theta) / synd (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Hvad er ligningen af tangentlinjen af r = tan ^ 2 (theta) - sin (theta-pi) ved theta = pi / 4?
R = (2 + sqrt2) / 2r = tan ^ 2-thetan (theta-pi) ved pi / 4r = tan ^ 2 (pi / 4) - sin (pi / 4 -pi) r = 1 ^ 2 - synd ((- 3pi) / 4) r = 1-sin ((5pi) / 4) r = 1 - (- sqrt2 / 2) r = 1 + sqrt2 / 2 r = (2 + sqrt2) / 2
Hvordan udtrykker du f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2theta i form af ikke-eksponentielle trigonometriske funktioner?
Se nedenfor f (theta) = 3sin ^ 2teta + 3cot ^ 2teta-3csc ^ 2theta = 3sin ^ 2ta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3 (csc ^ 2theta-1) -3csc ^ 2theta = 3sin ^ 2theta + annullere (3csc ^ 2theta) -cancel3csc ^ 2theta-3 = 3sin ^ 2theta-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta