Svar:
Forklaring:
At finde en ligning af linien, der er parallel med en anden linje, betyder simpelthen, at begge ikke ville krydse, så ved disse kan vi sige, at deres hældning skal være lige, hvis hældningen ikke er lige, ville de krydse
I den lineære ligning
Så fra din givne
Det kan vi konkludere med
Find derefter ligningen, hvor punkterne
Så for at besvare dit telefon spørgsmål,
Givet punkt
Ved at erstatte værdierne til formlen for at finde ligningens ligning
Vi vil have
Så ligningen af linjen, der er parallel med
En linje går gennem (8, 1) og (6, 4). En anden linje går gennem (3, 5). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
(1,7) Så vi må først finde retningsvektoren mellem (8,1) og (6,4) (6,4) - (8,1) = (- 2,3) Vi ved, at en vektorligning består af en positionsvektor og en retningsvektor. Vi ved, at (3,5) er en position på vektor ligningen, så vi kan bruge det som vores positionsvektor, og vi ved, at det er parallel den anden linje, så vi kan bruge den retningsvektor (x, y) = (3, 4) + s (-2,3) For at finde et andet punkt på linjen skal du bare erstatte et tal i s bortset fra 0 (x, y) = (3,4) +1 (-2,3) = (1,7 ) Så (1,7) er endnu et andet punkt.
En linje passerer gennem (4, 3) og (2, 5). En anden linje går gennem (5, 6). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
(3,8) Så vi må først finde retningsvektoren mellem (2,5) og (4,3) (2,5) - (4,3) = (- 2,2) Vi ved, at en vektorligning består af en positionsvektor og en retningsvektor. Vi ved, at (5,6) er en position på vektor ligningen, så vi kan bruge det som vores positionsvektor, og vi ved, at det er parallel den anden linje, så vi kan bruge den retningsvektor (x, y) = (5, 6) + s (-2,2) For at finde et andet punkt på linjen skal du bare erstatte et tal i s fra 0, så vi kan vælge 1 (x, y) = (5,6) +1 (-2,2) = (3,8) Så (3,8) er et andet andet punkt.
En linje går gennem (4, 9) og (1, 7). En anden linje går gennem (3, 6). Hvad er et andet punkt, at den anden linje kan passere, hvis den er parallel med den første linje?
Hældningen af vores første linje er forholdet mellem ændring i y for at ændre i x mellem de to givne punkter i (4, 9) og (1, 7). m = 2/3 vores anden linje vil have samme hældning, fordi den skal være parallel med første linie. vores anden linje har formularen y = 2/3 x + b hvor den passerer gennem det givne punkt (3, 6). Erstatter x = 3 og y = 6 i ligningen, så du kan løse for 'b'-værdien. Du bør få ligningen for 2. linie som: y = 2/3 x + 4 Der er et uendeligt antal point, du kan vælge fra den linje, men ikke det givne punkt (3, 6), men y-afsnittet v