Svar:
Forklaring:
At forenkle
I vores tilfælde kan vi begynde på følgende måde:
Da vi ikke har tal, kunne vi yderligere opdele, hvilket giver et andet antal end
Et par tal tæller som et tal, nemlig
Således kan vi nu skrive
Flere eksempler:
(1)
Vi kan ikke finde flere delelige faktorer, og vi har bestemt ikke et par tal, så vi stopper her og kalder det ikke forenklet. Det eneste svar er
(2)
Vi har fundet et par, så vi kan forenkle denne:
(3)
Vi fortsætter på samme måde og skriver
Hvad er [5 (kvadratroden af 5) + 3 (kvadratroden af 7)] / [4 (kvadratroden af 7) - 3 (kvadratroden af 5)]?
(159 + 29sqrt (35)) / 47 farve (hvid) ("XXXXXXXX") forudsat at jeg ikke har lavet nogen aritmetiske fejl (5 (sqrt (5)) + 3 (sqrt (7))) / Rationaliser nævneren ved at multiplicere med konjugatet: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16,7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Hvad er den forenklede form for kvadratroden af 10 - kvadratroden af 5 over kvadratroden af 10 + kvadratroden af 5?
(sqrt) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) ) "(sqrt (2) -1) / (sqrt (2) +1) farve (hvid) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) Farve (hvid) (" XXX ") = sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) farve (hvid) ("XXX") = (2-2sqrt2 + 1) / (2-1) farve ( "XXX") = 3-2sqrt (2)
Hvad er kvadratroden af 7 + kvadratroden på 7 ^ 2 + kvadratroden af 7 ^ 3 + kvadratroden på 7 ^ 4 + kvadratroden på 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Det første vi kan gøre er at annullere rødderne på dem med de lige kræfter. Siden: sqrt (x ^ 2) = x og sqrt (x ^ 4) = x ^ 2 for ethvert tal, kan vi bare sige at sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 omskrives som 7 ^ 2 * 7, og at 7 ^ 2 kan komme ud af roden! Det samme gælder for 7 ^ 5, men det er omskrevet som 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) N