Positionsvektoren for A har de kartesiske koordinater (20,30,50). Positionsvektoren for B har de kartesiske koordinater (10,40,90). Hvad er koordinaterne for positionsvektoren for A + B?
<30, 70, 140> When adding vectors, simply add the coordinates. A+B=<20, 30, 50> + <10, 40, 90> =<20+10, 30+40, 50+90> = <30, 70, 140>
Hvad er den kartesiske ækvivalent af polære koordinater (2, pi / 6)?
(x, y) -> (2cos (pi / 6) ), 2sin (pi / 6)) Husk tilbage til enhedens cirkel og specielle trekanter. pi / 6 = 30 ^ circ cos (pi / 6) = sqrt (3) / 2 sin (pi / 6) = 1/2 Erstatning i disse værdier. (x, y) -> (2) sqrt (3) / 2,2 * 1/2) (x, y) -> (sqrt (3), 1)
Hvordan konverterer du de kartesiske koordinater (10,10) til polære koordinater?
Cartesian: (10; 10) Polar: (10sqrt2; pi / 4) Problemet er repræsenteret ved nedenstående graf: I et 2D-rum findes et punkt med to koordinater: De kartesiske koordinater er lodrette og vandrette positioner ). De polære koordinater er afstand fra oprindelse og hældning med vandret (R, alfa). De tre vektorer vecx, vecy og vecR skaber en rigtig trekant, hvor du kan anvende pythagorasetningen og de trigonometriske egenskaber. Således finder du: R = sqrt (x ^ 2 + y ^ 2) alfa = cos ^ (- 1) (x / R) = sin ^ (- 1) (y / R) I dit tilfælde er det: R = sqrt (10 ^ 2 + 10 ^ 2) = sqrt (100 + 100) = sqrt200 = 1