Svar:
Fordi der ikke er nogen kraft, der virker på partiklen i vandret retning.
Forklaring:
Force er nødvendig for at ændre tilstanden af en krop, enten for at bringe den i bevægelse fra hvile, for at bringe den til hvile, mens den allerede bevæger sig eller for at ændre hastigheden af partikelets bevægelse.
Hvis der ikke er nogen ekstern kraft på partiklen, vil dens tilstand ikke ændres i henhold til Inertia Law. Så hvis det er i ro vil det forblive i hvile ELLER hvis det bevæger sig med en vis hastighed, vil det fortsætte med at bevæge sig for evigt med den konstante hastighed.
I tilfælde af projektil bevægelse ændres den vertikale komponent af partikelhastigheden kontinuerligt på grund af kraften, der virker i vertikal retning, som er dens egenvægt (
Men i vandret retning, da der ikke er nogen kraft, der virker på
objekt; dens horisontale hastighed forbliver konstant.
Hvad er forskellen mellem en graf med lineær bevægelse og en graf af harmonisk bevægelse?
Lineær bevægelse kan repræsenteres ved hjælp af en forskydningstidsgraf med en ligning på x = vt + x_0 hvor x = tekst (forskydning), v = tekst (hastighed), t = tekst (tid), x_0 = "initial forskydning" kan fortolkes som y = mx + c. Eksempel - x = 3t + 2 / y = 3x + 2 (initial forskydning er 2 enheder, og hver anden forskydning øges med 3): graf {3x + 2 [0, 6, 0, 17]} Med harmonisk bevægelse svinger et objekt omkring et ligevægtspunkt og kan repræsenteres som en forskydningstidsgraf med enten ligningen x = x_text (max) sin (omeg + s) eller x = x_text (max) cos (omegat + s
Et objekt bevæger sig i en cirkelbane med konstant hastighed. Hvilken erklæring om objektet er korrekt? A Det har ændret kinetisk energi. B Det har ændret momentum. C Det har konstant hastighed. D Det accelererer ikke.
B kinetisk energi afhænger af hastigheden i.e 1/2 mv ^ 2 (hvor m er dens masse og v er hastighed) Nu, hvis hastigheden forbliver konstant, ændres kinetisk energi ikke. Som hastighed er en vektormængde, mens den bevæger sig i en cirkulær vej, selvom dens størrelse er fast, men hastighedsændringen ændres, forbliver hastigheden ikke konstant. Nu er momentum også en vektormængde udtrykt som m vec v, så momentumændringer ændres som vec v ændringer. Nu, da hastigheden ikke er konstant, skal partiklen accelerere som a = (dv) / (dt)
En kvinde på en cykel accelererer fra hvile med konstant hastighed i 10 sekunder, indtil cyklen bevæger sig ved 20m / s. Hun opretholder denne hastighed i 30 sekunder, så bremserne skal decelerere med konstant hastighed. Cyklen kommer til ophør 5 sekunder senere.hjælp?
"Del a) acceleration" a = -4 m / s ^ 2 "del b) den samlede tilbagelagte distance er" 750 mv = v_0 + ved "Del a) I de sidste 5 sekunder har vi:" 0 = 20 + 5 a = > a = -4 m / s ^ 2 "del b)" "I de første 10 sekunder har vi:" 20 = 0 + 10 a => a = 2 m / s ^ 2 x = v_0 t + ved ^ 2 / 2 => x = 0 t + 2 * 10 ^ 2/2 = 100 m "I de næste 30 sekunder har vi konstant hastighed:" x = vt => x = 20 * 30 = 600 m " have: "x = 20 * 5 - 4 * 5 ^ 2/2 = 50 m =>" Total afstand "x = 100 + 600 + 50 = 750 m" Bemærkning: "" 20 m / s