Svar:
Forklaring:
Skriv som
Hvis du har standardformular for
Graden af en linje der er normal med dette er
Når det passerer gennem y = 02 ved x = 0 bliver ligningen:
I samme form som spørgsmålet giver:
Jane, Maria og Ben har hver en samling af marmor. Jane har 15 flere marmor end Ben, og Maria har 2 gange så mange marmor som Ben. Alt sammen har de 95 marmor. Lav en ligning for at bestemme, hvor mange marmor Jane har, Maria har, og Ben har?
Ben har 20 marmor, Jane har 35 og Maria har 40 Lad x være mængden af marmor Ben har derefter Jane har x + 15 og Maria har 2x 2x + x + 15 + x = 95 4x = 80 x = 20 derfor har Ben 20 marmor, Jane har 35 og Maria har 40
Hvad er ligningens ligning, der går igennem (9, -6) og vinkelret på linjen, hvis ligning er y = 1 / 2x + 2?
Y = -2x + 12 Ligningen af en linje med kendt gradient "" m "" og et kendt sæt af koordinater "" (x_1, y_1) "" er givet ved y-y_1 = m (x-x_1) den nødvendige linje er vinkelret på "" y = 1 / 2x + 2 for vinkelrette gradienter m_1m_2 = -1 gradienten af linjen er angivet 1/2 trre kræves gradient 1 / 2xxm_2 = -1 => m_2 = -2, så vi har givet koordinater " "(9, -6) y- -6 = -2 (x-9) y + 6 = -2x + 18 y = -2x + 12
Hvad er ligningens ligning, som går gennem skæringspunktet for linjerne y = x og x + y = 6, og som er vinkelret på linjen med ligning 3x + 6y = 12?
Linjen er y = 2x-3. Find først krydsningspunktet for y = x og x + y = 6 ved hjælp af et system af ligninger: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 og siden y = x: => y = 3 Linjens skæringspunkt er (3,3). Nu skal vi finde en linje, der går gennem punktet (3,3) og er vinkelret på linjen 3x + 6y = 12. For at finde hældningen af linjen 3x + 6y = 12 skal du konvertere den til hældningsaflytningsform: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Så hældningen er -1/2. Hældningerne af vinkelrette linjer er modsatte gensidige, så det betyder, at