Bevis at cosec (x / 4) + cosec (x / 2) + cosecx = cot (x / 8) -cotx?

Bevis at cosec (x / 4) + cosec (x / 2) + cosecx = cot (x / 8) -cotx?
Anonim

# LHS = cosec (x / 4) + cosec (x / 2) + cosecx #

# = cosec (x / 4) + cosec (x / 2) + cosecx + cotx-cotx #

# cosec (x / 4) + cosec (x / 2) + farve (blå) 1 / sinx + cosx / sinx -cotx #

# = cosec (x / 4) + cosec (x / 2) + farve (blå) (1 + cosx) / sinx -cotx #

# cosec (x / 4) + cosec (x / 2) + farve (blå) (2cos ^ 2 (x / 2)) / (2sin (x / 2) cos (x / 2)) - cotx #

= cosec (x / 4) + cosec (x / 2) + farve (blå) (cos (x / 2) / sin (x / 2)) - cotx #

# cosec (x / 4) + farve (grøn) (cosec (x / 2) + barneseng (x / 2)) - cotx #

#color (magenta) "Fortsættelse på lignende måde som før" #

# = Cosec (x / 4) + farve (grøn) barneseng (x / 4) -cotx #

# = Cot (x / 8) -cotx = RHS #

Svar:

Venligst gå gennem a Bevis givet i Forklaring.

Forklaring:

Indstilling # x = 8y #, vi har at bevise det,

# Cosec2y + cosec4y + cosec8y = coty-cot8y #.

Vær opmærksom på det, # Cosec8y + cot8y = 1 / (sin8y) + (cos8y) / (sin8y) #, # = (1 + cos8y) / (sin8y) #, # = (2cos ^ 2yy) / (2sin4ycos4y) #, # = (Cos4y) / (sin4y) #.

# "Således" cosec8y + co8y = cot4y = cot (1/2 * 8y) …….. (stjerne) #.

Tilføjelse, # Cosec4y #, # Cosec4y + (cosec8y + co8y) = cosec4y + cot4y #,

# = barneseng (1/2 * 4y) ……… fordi, (stjerne) #.

#:. cosec4y + cosec8y + co8y = cot2y #.

Re-tilsætning # Cosec2y # og genanvendelse af #(stjerne)#, # Cosec2y + (cosec4y + cosec8y + co8y) = cosec2y + cot2y #, # = Barneseng (1/2 * 2y) #.

#: cosec2y + cosec4y + cosec8y + co8y = coty, dvs. #

# cosec2y + cosec4y + cosec8y = coty-cot8y #, som ønsket!

Svar:

En anden tilgang, jeg synes at have lært tidligere fra respekteret sir dk_ch.

Forklaring:

# RHS = barneseng (x / 8) -cotx #

# = Cos (x / 8) / sin (x / 8) -COSX / sinx #

# = (Sinx * cos (x / 8) -COSX * sin (x / 8)) / (sinx * sin (x / 8)) #

# = Sin (x-x / 8) / (sinx * sin (x / 8)) = sin ((7x) / 8) / (sinx * sin (x / 8)) #

# = (2sin ((7x) / 8) * cos (x / 8)) / (2 * sin (x / 8) * cos (x / 8) * sinx) #

# = (Sinx + sin ((3x) / 4)) / (sinx * sin (x / 4)) = annullere (sinx) / (annullere (sinx) * sin (x / 4)) + (2sin ((3x) / 4) * cos (x / 4)) / (sinx * 2 * sin (x / 4) * cos (x / 4)) #

# = Cosec (x / 4) + (sinx + sin (x / 2)) / (sinx * sin (x / 2)) = cosecx + cosec (x / 2) + coesc (x / 4) = LHS #