Svar:
Periode
Se oscillationen i grafen, for den sammensatte bølge, inden for en periode
Forklaring:
graf {sin (18x) -koser (12x) -0,525, 0,525 -2,5, 2,5} Perioden for både sin kt og cos kt er
Her er de separate perioder af de to udtryk
Perioden (mindst muligt) P, for den sammensatte oscillation, er
givet af
Til
Bemærk at P / 2 ikke er perioden, så P er den mindst mulige værdi.
Se hvordan det virker.
Kontroller ved hjælp af understøttelse P / 2, i stedet for P, for mindst P.
Frekvensen
Bevis: - synd (7 theta) + synd (5 theta) / synd (7 theta) -sin (5 theta) =?
(sin7x + sin5x) / (sin7x-sin5x) = tan6x * cotx rarr (sin7x + sin5x) / (sin7x-sin5x) = (2sin ((7x + 5x) / 2) * cos ((7x-5x) / 2) ) / (2sin ((7x-5x) / 2) * cos ((7x + 5x) / 2) = (sin6x * cosx) / (sinx * cos6x) = (tan6x) / tanx = tan6x * cottx
Hvad er ligningen af tangentlinjen af r = tan ^ 2 (theta) - sin (theta-pi) ved theta = pi / 4?
R = (2 + sqrt2) / 2r = tan ^ 2-thetan (theta-pi) ved pi / 4r = tan ^ 2 (pi / 4) - sin (pi / 4 -pi) r = 1 ^ 2 - synd ((- 3pi) / 4) r = 1-sin ((5pi) / 4) r = 1 - (- sqrt2 / 2) r = 1 + sqrt2 / 2 r = (2 + sqrt2) / 2
Hvordan udtrykker du f (theta) = sin ^ 2 (theta) + 3cot ^ 2 (theta) -3csc ^ 2theta i form af ikke-eksponentielle trigonometriske funktioner?
Se nedenfor f (theta) = 3sin ^ 2teta + 3cot ^ 2teta-3csc ^ 2theta = 3sin ^ 2ta + 3cot ^ 2ta-3csc ^ 2theta = 3sin ^ 2ta + 3 (csc ^ 2theta-1) -3csc ^ 2theta = 3sin ^ 2theta + annullere (3csc ^ 2theta) -cancel3csc ^ 2theta-3 = 3sin ^ 2theta-3 = -3 (1-sin ^ 2theta) = -3cos ^ 2theta