Svar:
-73 og -75
Forklaring:
Vi leder efter to på hinanden følgende ulige tal, der giver op til -148. To på hinanden følgende ulige tal er på hver side af et lige antal, hvoraf en er en mindre og en er en mere. Derfor er tallene vi leder efter, op til det samme beløb som det dobbelte af det lige antal, de beslaglægger. I matematiske termer:
eller
Tilføjelse og subtraktion af en fra venstre side af den første ligning ændrer ikke summen, og hvis vi samler vilkårene sammen får vi:
hvilket er det samme som
hvor
og
Produktet af to på hinanden følgende heltal er 47 mere end det næste på hinanden følgende heltal. Hvad er de to heltal?
-7 og -6 ELLER 7 og 8 Lad heltalene være x, x + 1 og x + 2. Så x (x + 1) - 47 = x + 2 Løsning for x: x ^ 2 + x - 47 = x + 2 x ^ 2 - 49 = 0 (x + 7) (x - 7) = 0 x = -7 og 7 Kontrollerer tilbage, begge resultater arbejder, så de to heltal er enten -7 og -6 eller 7 og 8. Forhåbentlig hjælper!
Hvad er tre på hinanden følgende ulige heltal sådan, at summen af det midterste og største heltal er 21 mere end det mindste heltal?
De tre på hinanden følgende ulige heltal er 15, 17 og 19 For problemer med "på hinanden følgende jævne (eller ulige) cifre" er det værd at den ekstra besvær med at beskrive "fortløbende" cifre nøjagtigt. 2x er definitionen af et jævnt tal (et tal dividerbart med 2) Det betyder, at (2x + 1) er definitionen af et ulige tal. Så her er "tre på hinanden følgende ulige tal" skrevet på en måde, der er langt bedre end x, y, z eller x, x + 2, x + 4 2x + 1larr mindste heltal (det første ulige tal) 2x + 3larr midtertal det
"Lena har 2 på hinanden følgende heltal.Hun bemærker, at deres sum er lig med forskellen mellem deres kvadrater. Lena vælger yderligere 2 på hinanden følgende heltal og bemærker det samme. Bevis algebraisk, at dette gælder for 2 fortløbende heltal?
Venligst henvis til forklaringen. Husk at de på hinanden følgende heltal adskiller sig med 1. Derfor, hvis m er et helt tal, skal det efterfølgende heltal være n + 1. Summen af disse to heltal er n + (n + 1) = 2n + 1. Forskellen mellem deres kvadrater er (n + 1) ^ 2-n ^ 2, = (n ^ 2 + 2n + 1) -n ^ 2, = 2n + 1, som ønsket! Føl Mathens Glæde.!