Funktionen f er sådan, at f (x) = a ^ 2x ^ 2-ax + 3b for x <1 / (2a) Hvor a og b er konstant for det tilfælde hvor a = 1 og b = -1 Find f ^ - 1 (cf og find dens domæne Jeg kender domæne af f ^ -1 (x) = rækkevidde af f (x) og det er -13/4, men jeg kender ikke ulighedstegnretning?
Se nedenunder. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Område: Sæt i form y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Minimumsværdi -13/4 Dette sker ved x = 1/2 Så rækkevidde er 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Brug af kvadratisk formel: y = (- (- 1) + -sqrt ((1) ^ 2-4 (1) (-3-x))) / 2y = (1 + -sqrt (4x + 13)) / 2f ^ (- 1) (x) = 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Med en lille tanke kan vi se, at for domænet har vi den krævede inverse : f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Med domæne: (-13
Hvad er forholdets domæne og rækkevidde: {(3,40), (8,45), (3,30), (7,60)}?
Domæne: {3,7, 8} Område: {30, 40, 45,60} For en relation mellem formularfarven (rød) (x) rarrcolor (blå) (y) Domænet er værdisamlingen for hvilken farve (rød) (x) er defineret. Range er værdisamlingen for hvilken farve (blå) (y) er defineret. (Farve (rød) (3), farve (blå) (40)), (farve (rød) (8), farve (blå) ) (Farve (rød) (7), farve (blå) (60))} Farven (rød) ("Domæne" ") = {farve (rød) (3), farve (rød) (8), annuller (farve (rød) (3)), farve (rød) (7)} (bemærk fjernelse af duplikatværdien) Farve
Hvis f (x) = 3x ^ 2 og g (x) = (x-9) / (x + 1) og x! = - 1, hvad ville f (g (x)) ligestilles med? g (f (x))? f ^ -1 (x)? Hvad ville domænet, rækkevidde og nul for f (x) være? Hvad ville domænet, rækkevidde og nul for g (x) være?
F (g (x)) = 3 (x-9) / (x + 1)) 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) 1 (x) = root () (x / 3) D_f = {x i RR}, R_f = {f (x) i RR; f (x)> = 0} D_g = {x i RR; x! = - 1}, R_g = {g (x) i RR; g (x)! = 1}