Svar:
Forklaring:
Start med at skrive dit udtryk, hvilke funktioner
Nu er det vigtigt at indse her, at du kan skrive
Det betyder, at nævneren bliver
Udtrykket er nu
Derefter skal du rationalisere nævneren, som du kan gøre ved at gange tælleren og nævneren af
Hvad er [5 (kvadratroden af 5) + 3 (kvadratroden af 7)] / [4 (kvadratroden af 7) - 3 (kvadratroden af 5)]?
(159 + 29sqrt (35)) / 47 farve (hvid) ("XXXXXXXX") forudsat at jeg ikke har lavet nogen aritmetiske fejl (5 (sqrt (5)) + 3 (sqrt (7))) / Rationaliser nævneren ved at multiplicere med konjugatet: = (5 (sqrt (5)) + 3 (sqrt (7))) / (4 (sqrt (7)) - 3 (sqrt (5))) xx (4 (sqrt (7)) + 3 (sqrt (5))) 15 ((sqrt (5)) ^ 2) +12 ((sqrt (7)) ^ 2) + 9sqrt (35)) / (16 ((sqrt (7)) ^ 2) -9 ((sqrt (5) ) ^ 2)) = (29sqrt (35) +15 (5) +12 (7)) / (16,7) -9 (5)) = (29sqrt (35) + 75 + 84) / (112-45 ) = (159 + 29sqrt (35)) / 47
Hvad er den forenklede form for kvadratroden af 10 - kvadratroden af 5 over kvadratroden af 10 + kvadratroden af 5?
(sqrt) (sqrt (10) -sqrt (5)) / (sqrt (10) + sqrt (5) = 3-2sqrt (2) ) "(sqrt (2) -1) / (sqrt (2) +1) farve (hvid) (" XXX ") = (sqrt (2) -1) / (sqrt (2) +1) * (sqrt (2) -1) / (sqrt (2) -1) Farve (hvid) (" XXX ") = sqrt (2) -1) ^ 2 / ((sqrt (2) ^ 2-1 ^ 2) farve (hvid) ("XXX") = (2-2sqrt2 + 1) / (2-1) farve ( "XXX") = 3-2sqrt (2)
Hvad er kvadratroden af 7 + kvadratroden på 7 ^ 2 + kvadratroden af 7 ^ 3 + kvadratroden på 7 ^ 4 + kvadratroden på 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Det første vi kan gøre er at annullere rødderne på dem med de lige kræfter. Siden: sqrt (x ^ 2) = x og sqrt (x ^ 4) = x ^ 2 for ethvert tal, kan vi bare sige at sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Nu kan 7 ^ 3 omskrives som 7 ^ 2 * 7, og at 7 ^ 2 kan komme ud af roden! Det samme gælder for 7 ^ 5, men det er omskrevet som 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + 7sqrt (7) + 49 + 49sqrt (7) N