Svar:
c = 3,66
Forklaring:
eller
Vi ved, at siderne a og b er 1 og 3
Vi kender vinklen mellem dem Vinkel C er
Indtast i en lommeregner
En trekant har siderne A, B og C. Vinklen mellem siderne A og B er (7pi) / 12. Hvis side C har en længde på 16 og vinklen mellem siderne B og C er pi / 12, hvad er længden af side A?
A = 4.28699 enheder Lad mig først betegne siderne med små bogstaver a, b og c Lad mig nævne vinklen mellem side "a" og "b" med / _ C, vinkel mellem side "b" og "c" / " _ A og vinkel mellem side "c" og "a" med / _ B. Bemærk: - tegnet / _ læses som "vinkel". Vi er givet med / _C og / _A. Det er givet den side c = 16. Ved anvendelse af Sines lov (Sin / _A) / a = (sin / _C) / c indebærer Sin (pi / 12) / a = sin ((7pi) / 12) / 16 betyder 0,2558 / a = 0,9659 / 16 betyder 0,2558 / a = 0,06036875 betyder a = 0,25588 / 0,0603687
En trekant har siderne A, B og C. Vinklen mellem siderne A og B er pi / 3. Hvis side C har en længde på 12, og vinklen mellem siderne B og C er pi / 12, hvad er længden af side A?
2 sqrt (6) (sqrt (3) -1) Forudsat vinkler modsat sider A, B og C er henholdsvis / _A, / _B og / _C. Så / _C = pi / 3 og / _A = pi / 12 Brug Sinine Rule (Sin / _A) / A = (Sin / _B) / B = (Sin / _C) / C vi har, (Sin / _A) / A = (Sin / _C) / C (Sin (pi / 12)) / A = (Sin (pi / 3)) / 12 A = (sqrt (3) -1) / (2 sqrt (2)) * 12 * 1 / (sqrt3 / 2) eller, A = 2 sqrt (6) (sqrt (3) -1) eller, A ~ ~ 3.586
En trekant har siderne A, B og C. Siderne A og B har henholdsvis længder på henholdsvis 2 og 4. Vinklen mellem A og C er (7pi) / 24, og vinklen mellem B og C er (5pi) / 8. Hvad er området for trekanten?
Området er sqrt {6} - sqrt {2} kvadrat enheder, ca. 1.035. Området er et halvt produkt af to sider gange vinklen mellem vinklen mellem dem. Her får vi to sider, men ikke vinklen mellem dem, vi får de to andre vinkler i stedet. Så bestemm først den manglende vinkel ved at bemærke, at summen af alle tre vinkler er pi radianer: theta = pi- {7 pi} / {24} - {5 pi} / {8} = pi / { 12}. Derefter er trekantenes område Areal = (1/2) (2) (4) sin ( pi / {12}). Vi skal beregne sin ( pi / {12}). Dette kan gøres ved hjælp af formlen for sinus af en forskel: synd ( pi / 12) = sin (farve (