Svar:
Ligningen af parabolen er
Forklaring:
Ethvert punkt
Derfor,
Squaring og udvikling af
Ligningen af parabolen er
graf ((y-5-1 / 16 (x-9) ^ 2) (y-1) (x-9) ^ 2 + (y-9) ^ 2-0.01) = 0 -12,46, 23,58, -3,17, 14,86}
Hvad er standardformen for parabolas ligning med en directrix ved x = -8 og et fokus på (-7,3)?
(y-3) ^ 2 = -4 (15/2) (x-1/2) Direktoren er x = 8 fokuset S er (-7, 3) i den negative retning af x-aksen fra directrix. Ved at bruge definitionen af parabolen som punktets punktpunkt, der er lige fra direktrixen og fokuset, er dens ligning sqrt ((x + 7) ^ 2 + (y-3) ^ 2 = 8-x ,> 0, da parabolen er på fokus-siden af directrixen, i den negative x-retning. Kvadrering, udvidelse og forenkling er standardformularen. (Y-3) ^ 2 = -4 (15/2) (x-1/2). Parabolens akse er y = 3, i den negative x-retning, og vertexet V er (1/2, 3). Parameteren for størrelse, a = 15/2.,
Hvad er standardformen for parabolas ligning med fokus på (0,3) og en directrix af x = -2?
(y-3) ^ 2 = 4 (x + 1)> "fra ethvert punkt" (x, y) "på parabolen" "er afstanden til fokus og directrix fra dette punkt" "lig med" "ved hjælp af" farve (blå) "afstand formel derefter" sqrt (x ^ 2 + (y-3) ^ 2) = | x + 2 | Farve (blå) "Kvadrering begge sider" x ^ 2 + (y-3) ^ 2 = (x + 2) ^ 2 Afbryd (x ^ 2) + (Y-3) ^ 2 = Afbryd (x ^ 2) + 4x + 4 (y-3) ^ 2 = 4 (x + 1) graf {(y-3) ^ 2 = 4 (x + 1) [-10, 10, -5, 5]}
Hvad er standardformen for parabolas ligning med fokus på (11, -10) og en directrix af y = 5?
(X-11) ^ 2 = -30 (y +5 / 2). Se Socratic graf for parabolen, med fokus og directrix. Brug afstanden fra (x, y,) fra fokus (11, -10) = afstand fra directrix y = 5, sqrt ((x-11) ^ 2 + (y + 10) ^ 2) = | y-5 |. Kvadratering og omplacering (x-11) ^ 2 = -30 (y + 5/2) graf {((x-11) ^ 2 + 30 (y + 5/2)) (y-5) 11) ^ 2 + (y + 10) ^ 2-2. (X-11) = 0 [0, 22, -11, 5,1]}