Svar:
Forklaring:
Bemærk at det givne heltal er
Noter det:
#(10^1009-10^-1009)^2 = 10^2018-2+10^-2018 < 10^2018-1#
#(10^1009-10^-1010)^2 = 10^2018-2/10+10^-2020 > 10^2018-1#
Så:
# 10 ^ 1009-10 ^ -1009 <sqrt (10 ^ 2018-1) <10 ^ 1009-10 ^ -1010 #
og:
# 1/3 (10 ^ 1009-10 ^ -1009) <sqrt (1/9 (10 ^ 2018-1)) <1/3 (10 ^ 1009-10 ^ -1010) #
Den venstre side af denne ulighed er:
#overbrace (333 … 3) ^ "1009 gange".overbrace (333 … 3) ^ "1009 gange" #
og højre side er:
#overbrace (333 … 3) ^ "1009 gange".overbrace (333 … 3) ^ "1010 gange" #
Så vi kan se, at
Lad 5a + 12b og 12a + 5b være sidelængderne af en retvinklet trekant, og 13a + kb være hypotenusen, hvor a, b og k er positive heltal. Hvordan finder du den mindste mulige værdi af k og de mindste værdier af a og b for det k?
K = 10, a = 69, b = 20 Med Pythagoras sætning har vi: (13a + kb) ^ 2 = (5a + 12b) ^ 2 + (12a + 5b) ^ 2 Det er: 169a ^ 2 + 26kab + kb2b ^ 2 = 25a ^ 2 + 120ab + 144b ^ 2 + 144a ^ 2 + 120ab + 25b ^ 2 farve (hvid) (169a ^ 2 + 26kab + k ^ 2b ^ 2) = 169a ^ 2 + 240ab + 169b ^ 2 Træk venstre side fra begge ender for at finde: 0 = (240-26k) ab + (169-k ^ 2) b2 2 farve (hvid) (0) = b ((240-26k) a + 169-k ^ 2) b) Da b> 0 kræver vi: (240-26k) a + (169-k ^ 2) b = 0 Derefter kræver a, b> 0 (240-26k) og (169-k ^ 2) at have modsatte tegn. Når k i [1, 9] er både 240-26k og 169-k ^ 2 positive. Når k
Lad A være sæt af alle kompositter mindre end 10, og B være sæt positive positive heltal mindre end 10. Hvor mange forskellige summer af formen a + b er mulige, hvis a er i A og b er i B?
16 forskellige former for a + b. 10 unikke beløb. Den indstillede bb (A) En komposit er et tal, som kan divideres jævnt med et mindre antal end 1. For eksempel er 9 komposit (9/3 = 3), men 7 er ikke (en anden måde at sige dette er en sammensat nummeret er ikke primært). Alt dette betyder, at sæt A består af: A = {4,6,8,9} Sæt bb (B) B = {2,4,6,8} Vi er nu bedt om antallet af forskellige summer i formen af a + b hvor a i A, b i B. I en læsning af dette problem vil jeg sige, at der er 16 forskellige former for a + b (med ting som 4 + 6 er forskellige fra 6 + 4). Men hvis du læser
Hvad er det midterste heltal af 3 på hinanden følgende positive lige heltal, hvis produktet af de mindre to heltal er 2 mindre end 5 gange det største heltal?
8 '3 på hinanden følgende positive lige heltal' kan skrives som x; x + 2; x + 4 Produktet af de to mindre heltal er x * (x + 2) '5 gange det største heltal' er 5 * (x +4):. x * (x + 2) = 5 * (x + 4) - 2 x ^ 2 + 2x = 5x + 20 - 2 x ^ 2 -3x-18 = 0 (x-6) kan udelukke det negative resultat, fordi heltalene angives at være positive, så x = 6 Det midterste heltal er derfor 8