Hvad er symmetriaksen og toppunktet for grafen y = x ^ 2 - 4x + 1?

Hvad er symmetriaksen og toppunktet for grafen y = x ^ 2 - 4x + 1?
Anonim

Svar:

#x = 2 # er symmetrilinjen.

#(2,-3)# er vertexet.

Forklaring:

Find symmetriaksen først ved brug #x = (-b) / (2a) #

#y = x ^ 2-4x + 1 #

# x = (- (- 4)) / (2 (a)) = 4/2 = 2 #

Spidsen ligger på symmetrilinjen, så vi ved det #x = 2 #

Brug værdien af #x# at finde # Y #

#y = (2) ^ 2 -4 (2) + 1 #

#y = 4-8 + 1 = -3 #

Vertex er på #(2,-3)#

Du kan også bruge metoden til at udfylde firkanten for at skrive ligningen i vertexform: # y = a (x + b) ^ 2 + c #

#y = x ^ 2 -4x farve (blå) (+ 4-4) +1 "" farve (blå) (+ (b / 2) ^ 2- (b / 2) ^ 2) #

#y = (x-2) ^ 2 -3 #

Vertex er på # (- b, c) = (2, -3) #