Center for cirkel er på
Vinkel lavet af bue på cirklen =
Lade
Beregner afstanden mellem
Lad radius betegnes af
Derefter
Vi ved det:
Derfor er længden af lysbuen
Ligningen x ^ 2 + y ^ 2 = 25 definerer en cirkel ved oprindelsen og radiusen af 5. Linjen y = x + 1 passerer gennem cirklen. Hvad er det punkt (er), hvor linjen skærer cirklen?
Der er 2 punkter af intrersektion: A = (- 4; -3) og B = (3; 4) For at finde ud af, om der er krydsningspunkter, skal du løse system af ligninger, herunder cirkel- og linjekvationer: {(x ^ 2 + y ^ 2 = 25), (y = x + 1):} Hvis du erstatter x + 1 for y i første ligning, får du: x ^ 2 + (x + 1) ^ 2 = 25 x ^ 2 + x ^ 2 + 2x + 1 = 25 2x ^ 2 + 2x-24 = 0 Du kan nu opdele begge sider med 2 x ^ 2 + x-12 = 0 Delta = 1 ^ 2-4 * 1 * (- 12) Delta = 1 + 48 = 49 sqrt (Delta) = 7 x_1 = (- 1-7) / 2 = -4 x_2 = (- 1 + 7) / 2 = 3 Nu skal vi erstatte beregnede værdier af x for at finde tilsvarende værdier af y y_1 = x_1 +
Skriv punkt-skråning form af ligningen med den givne hældning, der passerer gennem det angivne punkt. A.) linjen med hældning -4 passerer gennem (5,4). og også B.) linjen med hældning 2 passerer gennem (-1, -2). Vær venlig at hjælpe, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "ligningen af en linje i" farve (blå) "punkt-skråning form" er. • farve (hvid) (x) y-y_1 = m (x-x_1) "hvor m er hældningen og" (x_1, y_1) "et punkt på linjen" (A) "givet" m = -4 " "(x_1, y_1) = (5,4)" erstatter disse værdier i ligningen giver "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråning form "(B)" givet "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "
En cirkels center ligger ved (9, 6) og passerer gennem (6, 2). Hvad er længden af en buebelægning (5 pi) / 6 radianer på cirklen?
= 13 enhed Radius af cirklen R = sqrt ((9-6) ^ 2 + (6-2) ^ 2) = sqrt25 = 5 Bue længden = Rxx5xxpi / 6 = 5xx5xxpi / 6 = 13 enhed