graf linjen.
se på det.
Hvis det krydser både x-aksen og y-aksen, vil den have 2 aflytninger (x-afsnit og y-afsnit).
X-interceptet er hvor det krydser x-aksen
y-afsnittet er hvor det krydser y-aksen.
Denne linje går gennem mange mange punkter. Her er nogle af dem: (-4, 0), (-4, 1), (-4, 3), (-4, 5), (-4, -3), (-4, -2) …..
lægge mærke til noget om disse punkter?
X-værdien er altid -4.
Når du plotter disse punkter, vil du også bemærke, at linjen er parallel med en af akserne.
Du vil nemt kunne se den ene afsnit, hvor den kun krydser en af akserne. Det vil ikke krydse de andre akser, fordi det er parallelt med det.
Hældningen beregnes ved at bestemme forholdet mellem ændring i Y til ændringen i X for et par udvalgte punkter.
Hældningen af en linje er -1/3. Hvordan finder du hældningen af en linje, der er vinkelret på denne linje?
"vinkelret hældning" = 3> "Med en linje med hældning m er hældningen af en linje" "vinkelret på den" m_ (farve (rød) "vinkelret") = - 1 / m rArrm _ ("vinkelret") = 1 / (- 1/3) = 3
Når en 40-N kraft parallelt med hældningen og rettet op til hældningen påføres en kasse på en friktionsfri hældning, der er 30 ° over vandret, er accelerationen af kassen 2,0 m / s ^ 2 op ad hældningen . Kasseens masse er?
M ~ = 5,8 kg Netto kraften op hældningen er givet af F_ "net" = m * a F_ "net" er summen af 40 N kraften op i hældningen og komponent af objektets vægt, m * g, ned hældningen. F_ "net" = 40 N - m * g * sin30 = m * 2 m / s ^ 2 Løsning for m, m * 2 m / s ^ 2 + m * 9,8 m / s ^ 2 * sin30 = 40 N m * (2 m / s ^ 2 + 9,8 m / s ^ 2 * sin30) = 40 Nm * (6,9 m / s ^ 2) = 40 Nm = (40 N) / (6,9 m / s ^ 2) Newton svarer til kg * m / s ^ 2. (Se F = ma for at bekræfte dette.) M = (40 kg * annuller (m / s ^ 2)) / (4,49 afbrydelse (m / s ^ 2)) = 5,8 kg Jeg håber det hjælp
Reuben sælger beaded halskæder. Hver stor halskæde sælger til 5,10 dollar, og hver lille halskæde sælger til 4,60 dollar. Hvor meget vil han tjene på at sælge 1 stor halskæde og 7 små halskæder?
Reuben vil tjene $ 37.30 fra at sælge 1 stort og 7 små halskæder. Lad os lave en formel til beregning af, hvor meget Reuben vil tjene på at sælge halskæder: Lad os først ringe, hvad han vil tjene. Så antallet af store halskæder vi kan ringe l og til store halskæder han sælger, vil han lave l xx $ 5,10. Også antallet af små halskæder vi kan ringe s og til små halskæder han sælger, vil han lave s xx $ 45.60. Vi kan sige dette helt for at få vores formel: e = (l xx $ 5,10) + (s xx $ 4,60) I problemet bliver vi bedt om at beregne for Reub