Hej, Ligningens linie kan findes fra forskellige termer.
- Dette er en topunktsform
- Som to point er givet lad punkterne være P og Q
1. med to punkter hældning af en linje kan opnås med
Formel være (
Her,, Y2 og Y1 er y-koordinater af to punkter.
X2 og X1 er x-koordinater for to givne punkter.
(koordinater (X1, Y1) og (X2, Y2) kan være af punkt P eller Q eller ellers henholdsvis Q eller P)
Derfor er formlen
(Y-Y1) = m (x-X1) …. (ligning1)
--
her Y1 og X1 kan koordinater være et af de to punkter dvs. X1 og Y1 kan være koordinater for P eller ellers Q..
For at forenkle kan du forstå hele problemet for en formel substituering m i ligning 1
formel være,
dette er netop opnået af undertekst m i ligning1
Tomas skrev ligningen y = 3x + 3/4. Da Sandra skrev hendes ligning, opdagede de, at hendes ligning havde alle de samme løsninger som Tomas ligning. Hvilken ligning kan være Sandras?
4y = 12x +3 12x-4y +3 = 0 En ligning kan gives i mange former og betyder stadig det samme. y = 3x + 3/4 "" (kendt som hældning / opfangningsform.) Multipliceret med 4 for at fjerne fraktionen giver: 4y = 12x +3 "" rarr 12x-4y = -3 "" (standardformular) 12x- 4y +3 = 0 "" (generel form) Disse er alle i den enkleste form, men vi kunne også få uendelige variationer af dem. 4y = 12x + 3 kunne skrives som: 8y = 24x +6 "" 12y = 36x +9, "" 20y = 60x +15 osv.
Lad jeg være en linje, der er beskrevet ved ligning ax + ved + c = 0 og lad P (x, y) være et punkt ikke på l. Udtryk afstanden, d mellem l og P i form af koefficienterne a, b og c i ligningens ligning?
Se nedenunder. http://socratic.org/questions/let-l-be-a-line-described-by-equation-ax-by-c-0-and-let-pxy-be-a-point-not-on- -1 # 336.210
Hvad er ligningens ligning, der går igennem (9, -6) og vinkelret på linjen, hvis ligning er y = 1 / 2x + 2?
Y = -2x + 12 Ligningen af en linje med kendt gradient "" m "" og et kendt sæt af koordinater "" (x_1, y_1) "" er givet ved y-y_1 = m (x-x_1) den nødvendige linje er vinkelret på "" y = 1 / 2x + 2 for vinkelrette gradienter m_1m_2 = -1 gradienten af linjen er angivet 1/2 trre kræves gradient 1 / 2xxm_2 = -1 => m_2 = -2, så vi har givet koordinater " "(9, -6) y- -6 = -2 (x-9) y + 6 = -2x + 18 y = -2x + 12