Svar:
Forklaring:
1) Find hældningen af to linjer.
2) Find vinkelret på begge skråninger.
3) Find midtpunkterne for de punkter du brugte.
4) Brug hældningen til at finde en ligning der passer til den.
4) Set svarer ligninger til hinanden.
5) Indsæt x-værdien og løse for y
6) svaret er …
Basen af en trekant af et givet område varierer omvendt som højden. En trekant har en base på 18cm og en højde på 10cm. Hvordan finder du højden på en trekant med samme område og med en base på 15cm?
Højde = 12 cm Området af en trekant kan bestemmes med ligningsområdet = 1/2 * base * højde Find området for den første trekant ved at erstatte målingen af trekanten i ligningen. Areatriangle = 1/2 * 18 * 10 = 90cm ^ 2 Lad højden af den anden trekant = x. Så området ligningen for den anden trekant = 1/2 * 15 * x Da områdene er ens, 90 = 1/2 * 15 * x gange begge sider ved 2. 180 = 15x x = 12
Hvad er orthocenteret af en trekant med hjørner på (1, 2), (5, 6) og (4, 6) #?
Trekantens orthocenter er: (1,9) Lad triangleABC være trekanten med hjørner ved A (1,2), B (5,6) og C (4,6) Lad bar (AL), stang (BM) og bar (CN) er højderne på side bar (BC), bar (AC) og bar (AB). Lad (x, y) være skæringspunktet mellem tre højder. Hældning af stang (AB) = (6-2) / (5-1) = 1 => Hældning af stang (CN) = - 1 [:. højde] og bar (CN) passerer gennem C (4,6) Så, equn. af bar (CN) er: y-6 = -1 (x-4) dvs. farve (rød) (x + y = 10 .... til (1) Nu, hældning af stang (AC) = ) / (4-1) = 4/3 => Hældning af stang (BM) = - 3/4 [:. Højde] og sta
Hvad er orthocenteret af en trekant med hjørner på (1, 3), (5, 7) og (2, 3) #?
Ortocentre i trekant ABC er H (5,0) Lad trianglen være ABC med hjørner ved A (1,3), B (5,7) og C (2,3). så er hældningen af "line" (AB) = (7-3) / (5-1) = 4/4 = 1 Lad bar (CN) _ | _bar (AB):. Hældningen af "linje" CN = -1 / 1 = -1, og den passerer gennem C (2,3). : .Equn. af "line" CN er: y-3 = -1 (x-2) => y-3 = -x + 2 ie x + y = 5 ... til (1) Nu er hældningen af "linje" (BC) = (7-3) / (5-2) = 4/3 Lad bar (AM) _ | _bar (BC):. Hældningen af "linje" AM = -1 / (4/3) = - 3/4, og den passerer gennem A (1,3). : .Equn. af "line" A