Vi kan bare bruge simple pythagorese sætning på dette problem
Vi ved, at et ben er 5 og en hypotenuse er 13, så vi plugger ind
Og vi løser for b, det manglende ben
Tag den positive kvadratrode, og vi finder det
Længden af det andet ben er 12
Hypotenusen af en rigtig trekant er 39 inches, og længden af et ben er 6 inches længere end to gange det andet ben. Hvordan finder du længden af hvert ben?
Benene er af længde 15 og 36 Metode 1 - Kendte trekanter De første få retvinklede trekanter med en ulige længdeside er: 3, 4, 5 5, 12, 13 7, 24, 25 Bemærk at 39 = 3 * 13, så Vil en trekant med følgende sider arbejde: 15, 36, 39 dvs 3 gange større end en 5, 12, 13 trekant? To gange 15 er 30, plus 6 er 36 - Ja. farve (hvid) () Metode 2 - Pythagoras formel og lidt algebra Hvis det mindre ben er af længde x, så er det større ben af længde 2x + 6 og hypotenus er: 39 = sqrt (x ^ 2 + (2x + 6) ^ 2) farve (hvid) (39) = sqrt (5x ^ 2 + 24x + 36) Firkant begge ender for at f
Længden af hypotenusen i en rigtig trekant er 20 centimeter. Hvis længden af et ben er 16 centimeter, hvad er længden af det andet ben?
"12 cm" Fra "Pythagoras Theorem" "h" ^ 2 = "a" ^ 2 + "b" ^ 2 hvor "h =" Hypotussidenes længde "a =" Længden af et ben "b =" Længden af en anden ben ("20 cm") ^ 2 = ("16 cm") ^ 2 + "b" ^ 2 "b" ^ 2 = ("20 cm") ^ 2 (16 cm ") ^ 2" b " = sqrt ("20 cm") ^ 2 ("16 cm") ^ 2) "b" = sqrt ("400 cm" ^ 2 - "256 cm" ^ 2) "b" = sqrt "^ 2)" b = 12 cm "
Et ben af en rigtig trekant er 3,2 centimeter lang. Længden af det andet ben er 5,7 centimeter. Hvad er længden af hypotenuse?
Hypotenus af højre trekant er 6,54 (2 dp) cm lang. Lad første ben af righr trekant være l_1 = 3,2 cm. Andet ben af højre trekant er l_2 = 5,7 cm. Hypotenus af en rigtig trekant er h = sqrt (l_1 ^ 2 + l_2 ^ 2) = sqrt (3.2 ^ 2 + 5,7 ^ 2) = sqrt42.73 = 6.54 (2dp) cm.