Ingen,
Fordi,
Svar:
Forklaring:
For ethvert reelt tal
En måde at nå frem til ovenstående konklusion på, ser på, hvordan vi tilføjer rationelle tal med samme nævneren:
Antallet af et sidste år er divideret med 2, og resultatet er vendt op og ned divideret med 3, derefter venstre til højre op og divideret med 2. Derefter vendes cifrene i resultatet for at gøre 13. Hvad er det sidste år?
Farve (rød) (1962) Her er de beskrevne trin: {: ("år", farve (hvid) ("xxx"), rarr ["resultat" 0]), (["resultat" 0] div 2 ,, rarr ["resultat" 2]), (["resultat" 2] "divideret med" 3, rarr ["resultat "3"), (("venstre højre op") ,, ("ingen ændring")), (["resultat" 3] div 2, rarr ["resultat" 4]), 4] "cifret tilbage" ,, rarr ["resultat" 5] = 13):} Arbejde baglæns: farve (hvid) ("XX") ["resultat" 4] = 31 farve (hvid) "resultat" 3] =
Hvad er den rigtige løsning fra det givne spørgsmål? ps - Jeg har 98 som svar, men det er ikke korrekt (? idk måske er det givne svar på bagsiden forkert, du kan også se og tjekke min løsning, jeg har vedhæftet løsningen under spørgsmålet)
98 er det rigtige svar.Givet: 4x ^ 3-7x ^ 2 + 1 = 0 Opdeling med 4 finder vi: x ^ 3-7 / 4x ^ 2 + 0x + 1/4 = (x-a) (x-beta) (x-gamma) = x ^ 3- (alfa + beta + gamma) x ^ 2 + (alfabet + betagamma + gammaalpha) x-alphabetagamma Så: {(alfa + beta + gamma = 7/4), (alfabet + betagamma + gammaalpha = 0) , (alphabetagamma = -1/4):} Så: 49/16 = (7/4) ^ 2-2 (0) farve (hvid) (49/16) = (alfa + beta + gamma) ^ 2-2 (alfabet + betagamma + gammaalpha) farve (hvid) (49/16) = alfa ^ 2 + beta ^ 2 + gamma ^ 2 og: 7/8 = 0-2 (-1/4) (7/4) farve hvide) (7/8) = (alfabet + betagamma + gammaalpha) ^ 2-2 alfabetagam (alfa + beta + gamma) far
Når et polynom er divideret med (x + 2), er resten -19. Når det samme polynom er divideret med (x-1), er resten 2, hvordan bestemmer du resten når polynomet er divideret med (x + 2) (x-1)?
Vi ved at f (1) = 2 og f (-2) = - 19 fra den resterende sætning Find nu resten af polynomet f (x), når delt med (x-1) (x + 2) Resten vil være af formlen Ax + B, fordi det er resten efter division af en kvadratisk. Vi kan nu formere divisor gange kvotienten Q ... f (x) = Q (x-1) (x + 2) + Axe + B Næste indsæt 1 og -2 for x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Løsning af disse to ligninger, vi får A = 7 og B = -5 Rest = Ax + B = 7x-5