Svar:
Forklaring:
Opsæt ligningen for at løse for variablerne A, B, C
Lad os løse for A, B, C først
LCD
Forenkle
Omarrangere vilkårene på højre side
lad os oprette ligningerne for at løse for A, B, C ved at matche de numeriske koefficienter for venstre og højre udtryk
Samtidig opløsning ved anvendelse af anden og tredje ligning resulterer i
Brug nu den første og fjerde ligning
Løs for at bruge
Løs C ved hjælp af
Vi udfører nu vores integration
Gud velsigne ….. Jeg håber forklaringen er nyttig.
Hvordan integrerer du f (x) = (3x ^ 2-x) / ((x ^ 2 + 2) (x-3) (x-7)) ved anvendelse af partielle fraktioner?
35 / 51ln | x-7 | -6 / 11ln | x-3 | -1/561 (79 / 2ln (x ^ 2 + 2) + 47sqrt2tan ^ -1 ((sqrt2x) / 2)) + C Siden nævneren er allerede opregnet, alt hvad vi behøver for at gøre partielle fraktioner, er løsningen for konstanterne: (3x ^ 2-x) / ((x ^ 2 + 2) (x-3) (x-7)) = (Ax + B) / (x ^ 2 + 2) + C / (x-3) + D / (x-7) Bemærk at vi har brug for både en x og et konstant udtryk på den venstre mest brøkdel, fordi tælleren altid er 1 grad lavere end nævneren. Vi kunne formere sig ved den venstre sidenævner, men det ville være en stor mængde arbejde, så vi kan i sted
Hvordan integrerer du int 1 / (x ^ 2 (2x-1)) ved hjælp af partielle fraktioner?
2ln | 2x-1 | -2ln | x | + 1 / x + C Vi skal finde A, B, C sådan at 1 / (x ^ 2 (2x-1)) = A / x + B / x ^ 2 + C / (2x-1) for alle x. Multiplicere begge sider med x ^ 2 (2x-1) for at få 1 = Akse (2x-1) + B (2x-1) + Cx ^ 2 1 = 2Ax ^ 2-Axe + 2Bx-B + Cx ^ 2 1 = Ligningskoefficienter giver os {(2A + C = 0), (2B-A = 0), (- B = 1):} Og således har vi A = -2, B = -1, C = 4. Ved at erstatte dette i den indledende ligning får vi 1 / (x ^ 2 (2x-1)) = 4 / (2x-1) -2 / x-1 / x ^ 2 Integrer den nu termen med termen int 4 / (2x-1) dx-int 2 / x dx-int 1 / x ^ 2 dx for at få 2ln | 2x-1 | -2ln | x | + 1 / x + C
Hvordan integrerer du int (x-9) / ((x + 3) (x-6) (x + 4)) ved hjælp af partielle fraktioner?
Du skal nedbryde (x-9) / ((x + 3) (x-6) (x + 4)) som en delfraktion. Du leder efter a, b, c i RR sådan at (x-9) / ((x + 3) (x-6) (x + 4)) = a / (x + 3) + b / -6) + c / (x + 4). Jeg skal vise dig, hvordan du finder en eneste, fordi b og c findes på nøjagtig samme måde. Du multiplicerer begge sider med x + 3, hvilket vil gøre det forsvinde fra nævneren på venstre side og få det til at vises ud for b og c. (x-9) / (x + 3) (x-6) (x + 4)) = a / (x + 3) + b / (x-6) + c / (x + 4) iff -9) / (x-6) (x + 4)) = a + (b (x + 3)) / (x-6) + (c (x + 3)) / (x + 4). Du vurderer dette ved x-3 for at f