Svar:
13,14 og 15
Forklaring:
Så vi ønsker 3 heltal, der er på hinanden følgende (som 1, 2, 3). Vi kender dem ikke (endnu), men vi ville skrive dem som x, x + 1 og x + 2.
Nu er den anden betingelse for vores problem, at summen af det andet og tredje tal (x + 1 og x + 2) skal svare til det første plus 16 (x + 16). Vi ville skrive det sådan:
Nu løser vi den ligning for x:
Tilføj 1 og 2
subtrahere x fra begge sider:
trække 3 fra begge sider:
Så tallene er:
Summen af tre tal er 4. Hvis den første er fordoblet, og den tredje er tredoblet, er summen to mindre end den anden. Fire mere end den første tilføjes til den tredje er to mere end den anden. Find numrene?
1 = 2, 2 = 3, 3 = -1 Opret de tre ligninger: Lad 1. = x, 2. = y og 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminer variablen y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Løs for x ved at eliminere variablen z ved at multiplicere EQ. 1 + EQ. 3 ved -2 og tilføjer til EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Løs for z ved at sætte x i EQ. 2 & EQ. 3: EQ. 2 med x: "" 4 - y + 3z
Tre på hinanden følgende positive enslige heltal er således, at produktet det andet og tredje heltal er tyve mere end ti gange det første heltal. Hvad er disse tal?
Lad tallene være x, x + 2 og x + 4. Derefter (x + 2) (x + 4) = 10x + 20 x ^ 2 + 2x + 4x + 8 = 10x + 20 x ^ 2 + 6x + 8 = 10x + 20 x ^ 2 - 4x - 12 = 0 (x - 6) (x + 2) = 0 x = 6 og -2 Da problemet angiver, at heltalet skal være positivt, har vi, at tallene er 6, 8 og 10. forhåbentlig hjælper dette!
Hvad er tre på hinanden følgende lige heltal sådan, at summen af de første og to gange den anden er 20 mere end den tredje?
10, 12, 14 Lad x være det mindste af de 3 heltal => Det andet heltal er x + 2 => Det største heltal er x + 4 x + 2 (x + 2) = x + 4 + 20 => x + 2x + 4 = x + 24 => 3x + 4 = x + 24 => 2x = 20 => x = 10 => x + 2 = 12 => x + 4 = 14 #