Svar:
Forklaring:
Hvis vi overvejer en boks struktur med længde
Da området af et rektangel er produktet af dets sidelængder, kan vi sætte dette sammen for at få overfladearealet
Højden af en åben kasse er 1 cm mere end længden af en side af sin firkantede base. hvis åben kasse har et overflade på 96 cm (kvadreret), hvordan finder du dimensionerne.?
Dimensionerne af kassen vil være længde = bredde = 4 cm og højde = 5 cm. Lad siden af kvadratbasen være x cms, så højden ville være x + 1 cms. Overfladen af den åbne boks ville være område af basis og område af sine fire ansigter, = xx + 4x * (x + 1) Derfor x ^ 2 + 4x ^ 2 + 4x = 96 5x ^ 2 + 4x -96 = 0 5x ^ 2 + 24x-20x-96 = 0x (5x + 24) -4 (5x + 24) = 0 (x-4) (5x + 24) = 0. Afvis negativ værdi for x, således x = 4 cms Dimensionerne af kassen ville være længde = bredde = 4 cm og højde = 5 cm
Længden af en kasse er 2 centimeter mindre end dens højde. Bredden af kassen er 7 centimeter mere end dens højde. Hvis kassen havde et volumen på 180 kubikcentimeter, hvad er dens overfladeareal?
Lad højden af kassen være h cm. Så vil længden være (h-2) cm og dens bredde vil være (h + 7) cm. Så ved betingelsen af problemet (h-2) xx (h + 7) xxh = 180 => (h2-2-2h) xx (h + 7) = 180 => h ^ 3-2h ^ 2 + 7h ^ 2-14h-180 = 0 => h ^ 3 + 5h ^ 2-14h- 180 = 0 For h = 5 LHS bliver nul Hermed (h-5) er faktor LHS Så h ^ 3-5h ^ 2 + 10h ^ 2-50h + 36h-180 = 0 => h ^ 2 (h-5) + 10h (h-5) +36 (h-5) = 0 => (h-5) (h2 2 + 10h + 36) = 0 Så Højde h = 5 cm Nu Længde = (5-2) = 3 cm Bredde = 5 + 7 = 12 cm Så overfladearealet bliver 2 (3xx12 + 12xx5 + 3xx5) = 222cm ^ 2
Hvad er dimensionerne af en kasse, der vil bruge den mindste mængde materialer, hvis firmaet har brug for en lukket kasse, hvor bunden er i form af et rektangel, hvor længden er dobbelt så lang som bredden og kassen skal holde 9000 kubikmeter materiale?
Lad os begynde med at sætte nogle definitioner. Hvis vi kalder h højden af kassen og x de mindre sider (så de større sider er 2x, kan vi sige det volumen V = 2x * x * h = 2x ^ 2 * h = 9000 hvorfra vi ekstraherer hh = 9000 / (2x ^ 2) = 4500 / x ^ 2 Nu for overfladerne (= materiale) Top og bund: 2x * x gange 2-> Område = 4x ^ 2 Korte sider: x * h gange 2-> Areal = 2xh Lange sider: 2x * h gange 2-> Areal = 4xh Samlet areal: A = 4x ^ 2 + 6xh Ved at erstatte h A = 4x ^ 2 + 6x * 4500 / x ^ 2 = 4x ^ 2 + 27000 / x = 4x ^ 2 + 27000x ^ -1 For at finde minimum, differentierer vi og sætter A