Givet
Bemærk at dette er en parabola i standard position (vertikal symmetriakse).
Symmetriaksen passerer gennem vertexet.
En metode til bestemmelse af vertex er ved at bemærke, at derivatet af funktionen er lig med nul ved vertexet
Hvis
(vi kunne nu beregne værdien af
Symmetriaksen er
Anden måde:
I en sådan parabola kan du også finde midtpunktet mellem de to punkter, hvor kurven krydser
Som du vil se
Samme svar, mindre arbejde, men denne metode er ikke altid brugbar.
Symmetriaksen for en funktion i form f (x) = x ^ 2 + 4x - 5 er x = -2. Hvad er koordinaterne for toppunktet i grafen?
Vetex -> (x, y) = (- 2, -9) Da x _ ("vertex") = - 2 Indstil y = f (x) = x ^ 2 + 4x-5 Stedfortræder en x farve (grøn) (y = farve (rød) (x) ^ 2 + 4farve (rød) (x) -5farve (hvid) ("dddd") -> farve (hvid) ("dddd") y = farve (rød) (- 2)) ^ 2 + 4farve (rød) ((- 2)) - 5 farve (grøn) (farve (hvid) ("ddddddddddddddddd") -> farve (hvid) = + 4farve (hvid) ("dddd") - 8farve (hvid) ("dd") - 5 y _ ("vertex") = - 9 Vetex -> (x, y) = (- 2, -9)
Sammenlign grafen for g (x) = (x-8) ^ 2 med grafen for f (x) = x ^ 2 (overordnet grafen). Hvordan vil du beskrive sin transformation?
G (x) er f (x) skiftet til højre med 8 enheder. Givet y = f (x) Når y = f (x + a) forskydes funktionen til venstre af en enhed (a> 0) eller forskydes til højre ved hjælp af en enhed (a <0) g (x) = (x-8) ^ 2 => f (x-8) Dette resulterer i, at f (x) skiftes til højre med 8 enheder.
Skitse grafen for y = 8 ^ x med angivelse af koordinaterne for punkter, hvor grafen krydser koordinatakserne. Beskriv fuldstændig transformationen, som transformerer grafen Y = 8 ^ x til grafen y = 8 ^ (x + 1)?
Se nedenunder. Eksponentielle funktioner uden vertikal transformation krydser aldrig x-aksen. Som sådan vil y = 8 ^ x ikke have x-aflytninger. Det vil have en y-intercept på y (0) = 8 ^ 0 = 1. Grafen skal ligne følgende. Grafen af y = 8 ^ (x + 1) er grafen for y = 8 ^ x flyttet 1 enhed til venstre, så det er y- aflytning ligger nu ved (0, 8). Du kan også se, at y (-1) = 1. graf {8 ^ (x + 1) [-10, 10, -5, 5]} Forhåbentlig hjælper dette!