Svar:
Forklaring:
Nævneren af f (x) kan ikke være nul, da dette ville gøre f (x) udefineret. At ligne nævneren til nul og løse giver de værdier, som x ikke kan være.
# "løse" x ^ 2-25 = 0rArr (x-5) (x + 5) = 0 #
#rArrx = + - 5larrcolor (rød) "er udelukket værdier" #
#rArr "domæne er" x inRR, x! = + - 5 #
# "for at finde en ekskluderet værdi i det område, vi kan bruge" #
# "vandret asymptote" #
# "horisontale asymptoter forekommer som" #
#lim_ (xto + -oo), f (x) toc "(en konstant)" # divider betingelser på tæller / nævneren med den højeste effekt x, det vil sige
# X ^ 2 #
#F (x) = (x ^ 2 / x ^ 2-9 / x ^ 2) / (x ^ 2 / x ^ 2-25 / x ^ 2) = (1-9 / x ^ 2) / (1 -25 / x ^ 2) # som
# XTO + -oo, f (x) til (1-0) / (1-0) #
# rArry = 1 "er asymptoten og dermed udelukket værdi" #
#rArr "rækkevidde er" y inRR, y! = 1 #
Domænet for f (x) er sæt af alle reelle værdier undtagen 7, og domænet for g (x) er sætet af alle reelle værdier bortset fra -3. Hvad er domænet for (g * f) (x)?
Alle reelle tal undtagen 7 og -3, når du multiplicerer to funktioner, hvad laver vi? vi tager f (x) -værdien og multiplicerer den med g (x) -værdien, hvor x skal være det samme. Men begge funktioner har begrænsninger, 7 og -3, så produktet af de to funktioner skal have * begge * begrænsninger. Normalt når de har funktioner på funktioner, hvis de tidligere funktioner (f (x) og g (x)) havde begrænsninger, bliver de altid taget som en del af den nye begrænsning af den nye funktion eller deres funktion. Du kan også visualisere dette ved at lave to rationelle funktione
Hvad er domænet og rækkevidden af 3x-2 / 5x + 1 og domænet og rækkevidden af invers af funktionen?
Domæne er alle reals undtagen -1/5, hvilket er området for den inverse. Område er alle reals undtagen 3/5, hvilket er domænet for den inverse. f (x) = (3x-2) / (5x + 1) er defineret og reelle værdier for alle x undtagen -1/5, så det er domænet af f og rækkevidden af f ^ -1 Indstilling y = (3x -2) / (5x + 1) og opløsning for x udbytter 5xy + y = 3x-2, så 5xy-3x = -y-2 og derfor (5y-3) x = -y-2, så endelig x = (- y-2) / (5y-3). Vi ser at y! = 3/5. Så rækkevidden af f er alle realiteter undtagen 3/5. Dette er også domænet af f ^ -1.
Hvad er domænet for den kombinerede funktion h (x) = f (x) - g (x), hvis domænet af f (x) = (4,4,5] og domænet af g (x) er [4, 4,5 )?
Domænet er D_ {f-g} = (4,4,5). Se forklaring. (f-g) (x) kan kun beregnes for de x, for hvilke både f og g er defineret. Så vi kan skrive det: D_ {f-g} = D_fnnD_g Her har vi D_ {f-g} = (4,4,5] nn [4,4,5) = (4,4,5)