Svar:
Forklaring:
Den mindst almindelige multiple (LCM) af to heltal
Vi kan finde LCM'et af to heltal ved at se på deres primære faktoriseringer og derefter tage produktet af det mindste antal primere, der er nødvendige for at "indeholde" begge dele. For eksempel at finde den mindst almindelige multiple af
og
For at være delelig med
Hvis vi ser på de vigtigste faktoriseringer af
og
Arbejder baglæns, vi ved det
eller
Hvad er den mindst almindelige multiple for frac {x} {x-2} + frac {x} {x + 3} = frac {1} {x ^ 2 + x-6} og hvordan løser du ligningerne ?
Se forklaring (x-2) (x + 3) ved FOIL (Første, Udenfor, Indvendig, Sidst) er x ^ 2 + 3x-2x-6 som forenkler x ^ 2 + x-6. Dette vil være din mindst almindelige multiple (LCM) Derfor kan du finde en fællesnævner i LCM ... x / (x-2) ((x + 3) / (x + 3)) + x / (x + 3 ) (x-2) / (x-2)) = 1 / (x ^ 2 + x-6) Forenkle for at få: (x (x + 3) + x (x-2)) / + x-6) = 1 / (x ^ 2 + x-6) Du ser, at deominatorerne er de samme, så tag dem ud. Nu har du følgende - x (x + 3) + x (x-2) = 1 Lad os distribuere; nu har vi x ^ 2 + 3x + x ^ 2-2x = 1 Tilføjelse af lignende udtryk, 2x ^ 2 + x = 1 Lav en side lig med
Hvad er den mindst almindelige multiple af 18x ^ 3y ^ 2z, 30x ^ 3yz ^ 2?
LCM er 6x ^ 3yz. LCM mellem 18 og 30 er 6. Opdel 6 i begge for at få 3 og 5. Disse kan ikke reduceres yderligere, så vi er sikre på, at 6 er LCM. LCM mellem x ^ 3 og x ^ 3 er x ^ 3, så at dividere begge udtryk med x ^ 3 giver os 1. LCM'en mellem y ^ 2 og y er bare y, da det er det laveste udtryk, der vises i begge. Tilsvarende er z z2 og z ligeledes z. Sæt alle disse sammen for at få 6x ^ 3yz
Hvad er den mindst almindelige multiple af 2, 3 og 14?
Det mindst almindelige multiple er 42 Du skal faktorere hvert tal i sine primære faktorer og multiplicere derefter faktorerne med de største eksponenter sammen: 2 = 2 3 = 3 14 = 2 * 7 Da de forskellige faktorer er 2,3 og 7, bare multiplicere dem sammen. 2 * 3 * 7 = 42