Svar:
Forklaring:
Jeg formoder at du vil finde
Dette giver os
Indstilling
For at gøre dette bruger vi nogle trigonometri. Giver en ret trekant med sider
Siden
Hvordan finder du derivatet af Inverse trig-funktionen f (x) = arcsin (9x) + arccos (9x)?
Her gør jeg det: - Jeg vil lade nogle "" theta = arcsin (9x) "" og nogle "" alpha = arccos (9x) Så jeg får, "" sintheta = 9x "" og "" cosalpha = 9x Jeg differentierer begge implicit som dette: => (costheta) (d (theta)) / (dx) = 9 "= = (d (theta)) / (dx) = 9 / (costheta) = 9 / (sqt (1-sin ^ 2theta)) = 9 / (sqrt (1- (9x) ^ 2) - Dernæst skelner jeg cosalpha = 9x => (- sinalpha) * (d (alfa)) / = 9 / (sqt (1-cosalpha)) = - 9 / sqrt (1- (9x)) / (dx) = - 9 / 2) Samlet set "" f (x) = theta + alfa Så, f ^ ('') (x) = (d
Prisen på kuglepenne varierer direkte med antallet af kuglepenne. En pen koster $ 2,00. Hvordan finder du k i ligningen for prisen på pennerne, brug C = kp, og hvordan finder du den samlede pris på 12 penn?
Samlede omkostninger på 12 penne er $ 24. C prop p:. C = k * p; C = 2,00, p = 1:. 2 = k * 1:. k = 2:. C = 2p {k er konstant] p = 12, C =? C = 2 * p = 2 * 12 = $ 24,00 I alt koster 12 penner $ 24,00. [Ans]
Hvordan bruger du grænse definitionen af derivatet for at finde derivatet af y = -4x-2?
-4 Definitionen af derivat er angivet som følger: lim (h-> 0) (f (x + h) -f (x)) / h Lad os anvende ovenstående formel på den givne funktion: lim (h-> 0) (f (x + h) -f (x)) / h = lim (h-> 0) (- 4 (x + h) -2 - (- 4x-2)) / h = lim (h-> 0 ) (- 4x-4h-2 + 4x + 2) / h = lim (h-> 0) ((- 4h) / h) Forenkling ved h = lim (h-> 0) (- 4) = -4