Svar:
Forklaring:
Jeg kan godt lide at indstille problemet som y, hvis det ikke allerede er. Det vil også hjælpe vores sag at omskrive problemet ved hjælp af logaritmernes egenskaber;
Nu gør vi to substitutioner for at gøre problemet lettere at læse;
Lad os sige
og
nu;
ahh, vi kan arbejde med dette:)
Lad os tage derivatet med hensyn til x fra begge sider. (Da ingen af vores variabler er x vil dette være implicit differentiering)
Nå ved vi derivatet af
Så lad os gå tilbage til
og
Plugging vores nyligt fundet derivater, og du, og w tilbage i
Hvis dette kan forenkles yderligere, har jeg ikke lært hvordan. Jeg håber det hjalp:)
Vis at cos²π / 10 + cos²4π / 10 + cos² 6π / 10 + cos²9π / 10 = 2. Jeg er lidt forvirret, hvis jeg laver Cos²4π / 10 = cos² (π-6π / 10) og cos²9π / 10 = cos² (π-π / 10), bliver den negativ som cos (180 ° -theta) = - costheta in den anden kvadrant. Hvordan går jeg med at bevise spørgsmålet?
Se nedenfor. LHS = cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 ((6pi) / 10) + cos ^ 2 ((9pi) / 10) = cos ^ 2 10) + cos ^ 2 ((4pi) / 10) + cos ^ 2 (pi- (4pi) / 10) + cos ^ 2 (pi- (pi) / 10) = cos ^ 2 (pi / 10) + cos ^ 2 (4pi) / 10) + cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10) = 2 * [cos ^ 2 (pi / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [cos ^ 2 (pi / 2- (4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * [sin ^ 2 ((4pi) / 10) + cos ^ 2 ((4pi) / 10)] = 2 * 1 = 2 = RHS
FCF (Functional Continued Fraction) cosh_ (cf) (x; a) = cosh (x + a / cosh (x + a / cosh (x + ...))). Hvordan beviser du at denne FCF er en jævn funktion med hensyn til både x og a, sammen? Og cosh_ (cf) (x; a) og cosh_ (cf) (-x; a) er forskellige?
Cosh_ (cf) (x; a) = cosh_ (cf) (- x; a) og cosh_ (cf) (x; -a) = cosh_ (cf) (- x; -a). Som cosh værdier er> = 1, nogen y her> = 1 Lad os vise, at y = cosh (x + 1 / y) = cosh (-x + 1 / y) Graferne er lavet tildele a = + -1. De tilsvarende to strukturer af FCF er forskellige. Graf for y = cosh (x + 1 / y). Bemærk, at a = 1, x> = - 1 graf {x-ln (y + (y ^ 2-1) ^ 0,5) + 1 / y = 0} Graf for y = cosh (-x + 1 / y). Bemærk, at a = 1, x <= 1 graf (x + ln (y + (y ^ 2-1) ^ 0,5) -1 / y = 0} Kombineret graf for y = cosh (x + 1 / y) og y = cosh (-x + 1 / y): graf {(x-ln (y + (y ^ 2-1) ^ 0,5) + 1 / y) (x + ln (y
Ved hjælp af Chebyshev Polynomial T_n (x) = cosh (n (arc cosh (x))), x> = 1 og gentagelsesrelationen T_ (n + 2) (x) = 2xT_ (n + 1) (x) - T_n x), med T_0 (x) = 1 og T_1 (x) = x, hvordan driver du den cosh (7 arc cosh (1.5)) = 421.5?
T_0 (1,5) eller kort, T_0 = 1. T_1 = 1,5 T_2 = 2 (1,5) (1,5) T_1-T_0 = 4,5-1 = 3,5 ved anvendelse af T_n = 2xT_ (n-1) -T_ (n-2), n> = 2. T_3 = 3 (3,5) -1,5 = 9 T_4 = 3 (9) -3,5 = 23,5 T_5 = 3 (23,5) -9 = 61,5 T_6 = 3 (61,5) -23,5 = 161 T_7 = 3 (161) -61,5 = 421,5 Fra wiki Chebyshev Polynomials Table ,. # T_7 (x) = 64x ^ 7-112x ^ 5 + 56x ^ 3-7x