Svar:
Forklaring:
Lad os kontrollere
Og
Svar:
Forklaring:
Lade
Derefter,
Multiplikation ved
Summen af tre tal er 4. Hvis den første er fordoblet, og den tredje er tredoblet, er summen to mindre end den anden. Fire mere end den første tilføjes til den tredje er to mere end den anden. Find numrene?
1 = 2, 2 = 3, 3 = -1 Opret de tre ligninger: Lad 1. = x, 2. = y og 3. = z. EQ. 1: x + y + z = 4 EQ. 2: 2x + 3z + 2 = y "" => 2x - y + 3z = -2 EQ. 3: x + 4 + z -2 = y "" => x - y + z = -2 Eliminer variablen y: EQ1. + EQ. 2: 3x + 4z = 2 EQ. 1 + EQ. 3: 2x + 2z = 2 Løs for x ved at eliminere variablen z ved at multiplicere EQ. 1 + EQ. 3 ved -2 og tilføjer til EQ. 1 + EQ. 2: (-2) (EQ. 1 + EQ. 3): -4x - 4z = -4 "" 3x + 4z = 2 ul (-4x - 4z = -4) -x "" = -2 "" = > x = 2 Løs for z ved at sætte x i EQ. 2 & EQ. 3: EQ. 2 med x: "" 4 - y + 3z
At kende formlen til summen af N heltalene a) Hvad er summen af de første N sammenhængende firkantede heltal, Sigma_ (k = 1) ^ N k ^ 2 = 1 ^ 2 + 2 ^ 2 + cdots + (N-1 ) ^ 2 + N ^ 2? b) Summen af de første N sammenhængende kub-heltal Sigma_ (k = 1) ^ N k ^ 3?
For S_k (n) = sum_ {i = 0} ^ ni ^ k S_1 (n) = (n (n + 1)) / 2S_2 (n) = 1/6 n (1 + n) (1 + 2 n ) S_3 (n) = ((n + 1) ^ 4- (n + 1) -6S_2 (n) -4S_1 (n)) / 4 Vi har sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ n (i + 1) ^ 3 - (n + 1) ^ 3 sum_ {i = 0} ^ ni ^ 3 = sum_ {i = 0} ^ ni ^ 3 + 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 30 = 3sum_ {i = 0} ^ ni ^ 2 + 3sum_ {i = 0} ^ ni + sum_ {i = 0} ^ n 1- (n + 1) ^ 3 opløsning for sum_ {i = 0} ^ ni ^ 2 sum_ {i = 0} ^ ni ^ 2 = (n + 1) ^ 3 / 3- (n + 1) / 3-sum_ {i = 0} ^ ni men sum_ {i = 0} ^ ni = ((n + 1) n) / 2 så sum_ {i = 0} ^ ni ^ 2 = +1) ^ 3 / 3-
Hvad er sandsynligheden for, at den første søn af en kvinde, hvis bror er berørt, vil blive påvirket? Hvad er sandsynligheden for, at den anden søn af en kvinde, hvis bror er berørt, vil blive påvirket, hvis hendes første søn blev berørt?
P ("første søn har DMD") = 25% P ("anden søn har DMD" | "første søn har DMD") = 50% Hvis en kvinders bror har DMD, er kvindens mor en bærer af genet. Kvinden vil få halvdelen af hendes kromosomer fra hendes mor; så der er en 50% chance for at kvinden vil arve genet. Hvis kvinden har en søn, vil han arve halvdelen af sine kromosomer fra sin mor; så der ville være en 50% chance, hvis hans mor var en transportør, at han ville have det defekte gen. Derfor, hvis en kvinde har en bror med DMD, er der en 50% XX50% = 25% chance for, at hend