Svar:
Forklaring:
Integration af dele er en dårlig idé her, du vil hele tiden have
Det siger vi
Hvordan integrerer du int sec ^ -1x ved integration efter delmetode?
Svaret er = x "bc" secx-ln (x + sqrt (x ^ 2-1)) + C Vi har brug for (sec ^ -1x) '= ("bue" secx)' = 1 / (xsqrt 2-1)) intsecxdx = ln (sqrt (x ^ 2-1) + x) Integration af dele er intu'v = uv-intuv 'Her har vi u' = 1, =>, u = xv = "bue "secx, =>, v '= 1 / (xsqrt (x ^ 2-1)) Derfor er int" bue "secxdx = x" bue "secx-int (dx) / (sqrt (x ^ 2-1)) Udfør det andet integral ved substitution Lad x = secu, =>, dx = secutanudu sqrt (x ^ 2-1) = sqrt (sec ^ 2u-1) = tanu intdx / sqrt (x ^ 2-1) = int (secutanudu ) / (tanu) = intsecudu = int (secu + tanu) d
Hvordan integrerer du int x ^ 2 e ^ (- x) dx ved hjælp af integration af dele?
Intx ^ 2e ^ (- x) dx = -e ^ (- x) (x ^ 2 + 2x + 2) + C Integrering af dele siger at: intv (du) / (dx) = uv-intu (dv) / (dx) = e ^ (- x); v = -e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) -int-2xe ^ (- 2x) dx Nu gør vi dette: int-2xe ^ (- 2x) dx u = 2x; (du) / (dx) = 2 ) - (dx) = - e ^ (- x); v = e ^ (- x) int-2xe ^ (- x) dx = 2xe ^ (- x) -int2e ^ (- x) dx = 2xe ^ -x) + 2e ^ (- x) intx ^ 2e ^ (- x) dx = -x ^ 2e ^ (- x) - (2xe ^ (- x) + 2e ^ (- x)) = - x ^ 2e ^ (- x) -2xe ^ (- x) -2E ^ (- x) + C = -e ^ (- x) (x ^ 2 + 2x + 2) + C
Hvordan integrerer du int xsin (2x) ved integration efter delmetode?
= 1 / 4sin (2x) - x / 2cos (2x) + C For u (x), v (x) int uv'dx = uv '- int u'vdx u (x) = x betyder u' = 1 v '(x) = sin (2x) betyder v (x) = -1 / 2cos (2x) intxsin (2x) dx = -x / 2cos (2x) + 1 / 2intcos (2x) dx = -x / 2cos (2x) + 1 / 4sin (2x) + C