Svar:
Forklaring:
For det første skal vi begynde med en ligning, som vi ved om et område med en cirkel, poolen og dens radius:
# A = pir ^ 2 #
Men vi ønsker at se, hvor hurtigt poolområdet er stigende, hvilket lyder meget som sats … hvilket lyder meget som et derivat.
Hvis vi tager derivatet af
# (DA) / dt = pi * 2r * (dr) / dt #
(Glem ikke at kædelegemet gælder på højre side med
Så, vi vil afgøre
# (DA) / dt = pi * 2 (5) * 4 = 40pi #
For at sige dette til ord siger vi det:
Området af poolen stiger med en hastighed på
# Bb40pi # cm# "" ^ BB2 # / min når cirkelens radius er# BB5 # cm.
Højden af en trekant stiger med en hastighed på 1,5 cm / min, mens trekantenes område er stigende med en hastighed på 5 cm / min. Ved hvilken hastighed ændres bunden af trekanten, når højden er 9 cm, og området er 81 kvadrat cm?
Dette er en relateret hastighed (af forandring) type problem. De interesserede variabler er a = højde A = område, og da området af en trekant er A = 1 / 2ba, har vi brug for b = base. De givne ændringer er i enheder pr. Minut, så den (usynlige) uafhængige variabel er t = tid i minutter. Vi får: (da) / dt = 3/2 cm / min (dA) / dt = 5 cm "" ^ 2 / min Og vi bliver bedt om at finde (db) / dt når a = 9 cm og A = 81 cm "" 2 A = 1 / 2ba, der differentieres med hensyn til t, får vi: d / dt (A) = d / dt (1 / 2ba). Vi skal bruge produktreglen til højre. (dA) / dt
Dyrehaven har to vandtanke, der lækker. En vandtank indeholder 12 gal vand og lækker ved en konstant hastighed på 3 g / time. Den anden indeholder 20 gal vand og lækker ved en konstant hastighed på 5 g / time. Hvornår vil begge tanke have samme mængde?
4 timer. Første tank har 12g og taber 3g / h Anden tank har 20g og taber 5g / hr Hvis vi repræsenterer tiden med t, kan vi skrive dette som en ligning: 12-3t = 20-5t Løsning for t 12-3t = 20-5t => 2t = 8 => t = 4: 4 timer. På nuværende tidspunkt vil begge tanke være tømt samtidigt.
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (