Svar:
Hældning
Forklaring:
Brug hældningsformlen:
Givet
Lade
At erstatte hældningsformlen …
Hvad er ligningen for linien, der passerer gennem (0, -1) og er vinkelret på linjen, der passerer gennem følgende punkter: (8, -3), (1,0)?
7x-3y + 1 = 0 Hældningen af linjen, der forbinder to punkter (x_1, y_1) og (x_2, y_2) er givet af (y_2-y_1) / (x_2-x_1) eller (y_1-y_2) / (x_1-x_2) ) Da punkterne er (8, -3) og (1, 0), vil hældningen af linjen forbinde dem med (0 - (- 3)) / (1-8) eller (3) / (- 7) dvs. -3/7. Produkt af hældning af to vinkelrette linjer er altid -1. Derfor vil hældningen af linjen vinkelret på den være 7/3, og derfor kan ligning i hældningsform skrives som y = 7 / 3x + c Da dette går gennem punktet (0, -1), sætter vi disse værdier i ovenstående ligning -1 = 7/3 * 0 + c eller c = 1 De
Hvad er ligningen af linien, der passerer gennem (-1,3) og er vinkelret på linjen, der passerer gennem følgende punkter: (6, -4), (5,2)?
Endelig svar: 6y = x + 19 oe. Definerer linje, der passerer gennem a: (- 1, 3) som l_1. Definerer linje, der passerer gennem b: (6, -4), c: (5, 2) som l_2. Find gradienten af l_2. m_2 = (y_b-y_c) / (x_b-x_c) = (- 4-2) / (6-5) = - 6 l_2_ | _l_1 Så m_1 = -1 / m_2 = -1 / -6 = 1/6 Ligning af l_1: y-y_a = m_1 (x-x_a) y-3 = 1/6 (x + 1) 6y-18 = x + 1 6y = x + 19 Eller dog vil du have arrangeret det.
Skriv punkt-skråning form af ligningen med den givne hældning, der passerer gennem det angivne punkt. A.) linjen med hældning -4 passerer gennem (5,4). og også B.) linjen med hældning 2 passerer gennem (-1, -2). Vær venlig at hjælpe, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "ligningen af en linje i" farve (blå) "punkt-skråning form" er. • farve (hvid) (x) y-y_1 = m (x-x_1) "hvor m er hældningen og" (x_1, y_1) "et punkt på linjen" (A) "givet" m = -4 " "(x_1, y_1) = (5,4)" erstatter disse værdier i ligningen giver "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråning form "(B)" givet "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "