Svar:
Resten er lig med
Forklaring:
Først og fremmest kan dette problem omformuleres som at skulle finde værdien af
For at løse dette problem skal du kende Eulers sætning. Eulers sætning hedder det
Nu da vi kender Euler's sætning, kan vi gå på at løse dette problem.
Bemærk at alle primere undtagen
Siden
Derfor har vi nu
Ovennævnte udtryk kan oversættes til
Nu skal vi bare redegøre for
Derfor har vi i det hele taget bevist det
Resten af et polynom f (x) i x er henholdsvis 10 og 15, når f (x) er divideret med (x-3) og (x-4). Find resten, når f (x) er divideret med (x- 3) (- 4)?
5x-5 = 5 (x-1). Husk at graden af resten poly. er altid mindre end divisoren poly. Derfor, når f (x) er divideret med en kvadratisk poly. (x-4) (x-3), resten poly. skal være lineær, sig, (ax + b). Hvis q (x) er kvotienten poly. i ovenstående division har vi f (x) = (x-4) (x-3) q (x) + (ax + b) ............ <1> . f (x), når deles med (x-3), bliver resten 10, rArr f (3) = 10 .................... [fordi " Resterende sætning] ". Derefter ved <1>, 10 = 3a + b .................................... <2 >. Tilsvarende f (4) = 15 og <1> rArr 4a + b = 15 ................
Brug resten af sætningen, hvordan finder du resten af 3x ^ 5-5x ^ 2 + 4x + 1 når den er divideret med (x-1) (x + 2)?
42x-39 = 3 (14x-13). Lad os angive, ved p (x) = 3x ^ 5-5x ^ 2 + 4x + 1, det givne polynomiale (poly.). Bemærk, at divisoren poly., (X-1) (x + 2), er af grad 2, resten af resten (poly.), Der søges efter, skal være mindre end 2. Derfor antager vi det, at resten er økse + b. Nu, hvis q (x) er kvotienten poly., Så har vi, p (x) = (x-1) (x + 2) q (x) + (ax + b) eller , 3x ^ 5-5x ^ 2 + 4x + 1 = (x-1) (x + 2) q (x) + (ax + b) ...... (stjerne). (stjerne) "holder godt" AA x i RR. Vi foretrækker, x = 1 og x = -2! Sub.ing, x = 1 i (stjerne), 3-5 + 4 + 1 = 0 + (a + b), eller, a + b = 3 ........
Når et polynom er divideret med (x + 2), er resten -19. Når det samme polynom er divideret med (x-1), er resten 2, hvordan bestemmer du resten når polynomet er divideret med (x + 2) (x-1)?
Vi ved at f (1) = 2 og f (-2) = - 19 fra den resterende sætning Find nu resten af polynomet f (x), når delt med (x-1) (x + 2) Resten vil være af formlen Ax + B, fordi det er resten efter division af en kvadratisk. Vi kan nu formere divisor gange kvotienten Q ... f (x) = Q (x-1) (x + 2) + Axe + B Næste indsæt 1 og -2 for x ... f (1) = Q (1-1) (1 + 2) + A (1) + B = A + B = 2f (-2) = Q (-2-1) (- 2 + 2) + A (-2) + B = -2A + B = -19 Løsning af disse to ligninger, vi får A = 7 og B = -5 Rest = Ax + B = 7x-5