Svar:
Forklaring:
Lineær betyder at gøre med en lige linje.
Ligningens ligning skal have mindst 2 af følgende udtryk:
en x-term, en y-term og et konstant (eller tal) udtryk.
X og y må ikke være i nævneren.
I
De første og andre udtryk for en geometrisk sekvens er henholdsvis de første og tredje udtryk for en lineær sekvens. Den fjerde term af den lineære sekvens er 10, og summen af dens første fem term er 60 Find de første fem udtryk for den lineære sekvens?
{16, 14, 12, 10, 8} En typisk geometrisk sekvens kan repræsenteres som c0a, c_0a ^ 2, cdots, c_0a ^ k og en typisk aritmetisk sekvens som c0a, c_0a + Delta, c0a + 2Delta, cdots, c_0a + kDelta Calling c_0 a som det første element for den geometriske sekvens vi har {(c_0 a ^ 2 = c_0a + 2Delta -> "Første og anden af GS er den første og tredje af en LS"), (c_0a + 3Delta = 10- > "Den fjerde term for den lineære sekvens er 10"), (5c_0a + 10Delta = 60 -> "Summen af dens første fem sigt er 60"):} Løsning for c_0, a, Delta opnår vi c_0 = 64/3 , a = 3/4
Omkredsen af et rektangulært trædæk er 90 fod. Dækets længde, jeg, er 5 meter mindre end 4 gange dens bredde, w. Hvilket system af lineære ligninger kan bruges til at bestemme trædækets dimensioner, n fod?
"længde" = 35 "fødder" og "bredde" = 10 "fødder" Du får perimeter af det rektangulære dæk er 90 fod. farve (blå) (2xx "længde" + 2xx "bredde" = 90) Du får også, at dækslængden er 5 fod mindre end 4 gange den er bredde. Det er farve (rød) ("længde" = 4xx "bredde" -5) Disse to ligninger er dit system af lineære ligninger. Den anden ligning kan tilsluttes i den første ligning. Dette giver os en ligning helt i form af "bredde". farve (blå) (2xx (bredde) -
Reuben sælger beaded halskæder. Hver stor halskæde sælger til 5,10 dollar, og hver lille halskæde sælger til 4,60 dollar. Hvor meget vil han tjene på at sælge 1 stor halskæde og 7 små halskæder?
Reuben vil tjene $ 37.30 fra at sælge 1 stort og 7 små halskæder. Lad os lave en formel til beregning af, hvor meget Reuben vil tjene på at sælge halskæder: Lad os først ringe, hvad han vil tjene. Så antallet af store halskæder vi kan ringe l og til store halskæder han sælger, vil han lave l xx $ 5,10. Også antallet af små halskæder vi kan ringe s og til små halskæder han sælger, vil han lave s xx $ 45.60. Vi kan sige dette helt for at få vores formel: e = (l xx $ 5,10) + (s xx $ 4,60) I problemet bliver vi bedt om at beregne for Reub