Dyrehaven har to vandtanke, der lækker. En vandtank indeholder 12 gal vand og lækker ved en konstant hastighed på 3 g / time. Den anden indeholder 20 gal vand og lækker ved en konstant hastighed på 5 g / time. Hvornår vil begge tanke have samme mængde?
4 timer. Første tank har 12g og taber 3g / h Anden tank har 20g og taber 5g / hr Hvis vi repræsenterer tiden med t, kan vi skrive dette som en ligning: 12-3t = 20-5t Løsning for t 12-3t = 20-5t => 2t = 8 => t = 4: 4 timer. På nuværende tidspunkt vil begge tanke være tømt samtidigt.
To urner indeholder hver især grønne bolde og blå bolde. Urn Jeg indeholder 4 grønne bolde og 6 blå bolde, og Urn ll indeholder 6 grønne bolde og 2 blå bolde. En bold trækkes tilfældigt fra hver urn. Hvad er sandsynligheden for, at begge bolde er blå?
Svaret er = 3/20 Sandsynligheden for at tegne et blueball fra Urn Jeg er P_I = farve (blå) (6) / (farve (blå) (6) + farve (grøn) (4)) = 6/10 Mulighed for tegning en blåbold fra Urn II er P_ (II) = farve (blå) (2) / (farve (blå) (2) + farve (grøn) (6)) = 2/8 Sandsynlighed for at begge bolde er blå P = P_I * P_ (II) = 6/10 * 2/8 = 3/20
Skriv punkt-skråning form af ligningen med den givne hældning, der passerer gennem det angivne punkt. A.) linjen med hældning -4 passerer gennem (5,4). og også B.) linjen med hældning 2 passerer gennem (-1, -2). Vær venlig at hjælpe, dette forvirrende?
Y-4 = -4 (x-5) "og" y + 2 = 2 (x + 1)> "ligningen af en linje i" farve (blå) "punkt-skråning form" er. • farve (hvid) (x) y-y_1 = m (x-x_1) "hvor m er hældningen og" (x_1, y_1) "et punkt på linjen" (A) "givet" m = -4 " "(x_1, y_1) = (5,4)" erstatter disse værdier i ligningen giver "y-4 = -4 (x-5) larrcolor (blå)" i punkt-skråning form "(B)" givet "m = 2 "og" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor i punkt-skråning form "