Svar:
eller
Forklaring:
Fordi linjen angivet i problemet er i skråningen aflytningsformularen, kender vi hældningen af denne linje
Hældningsaflytningsformen for en lineær ligning er:
Hvor
Dette er et vægtet gennemsnitsproblem.
To vinkelrette linjer har en negativ omvendt skråning af hinanden.
Linjen vinkelret på en linje med hældning
Derfor er den linje, vi leder efter, en skråning på
Vi kan nu bruge punkt-hældningsformlen til at finde ligningen for den linje, vi leder efter.
Point-slope formel siger:
Hvor
Vi kan erstatte den hældning, vi beregner, og det punkt, vi fik til at give ligningen vi søger:
Hvis vi ønsker at sætte dette i hældningsaflytningsform, kan vi løse det
To urner indeholder hver især grønne bolde og blå bolde. Urn Jeg indeholder 4 grønne bolde og 6 blå bolde, og Urn ll indeholder 6 grønne bolde og 2 blå bolde. En bold trækkes tilfældigt fra hver urn. Hvad er sandsynligheden for, at begge bolde er blå?
Svaret er = 3/20 Sandsynligheden for at tegne et blueball fra Urn Jeg er P_I = farve (blå) (6) / (farve (blå) (6) + farve (grøn) (4)) = 6/10 Mulighed for tegning en blåbold fra Urn II er P_ (II) = farve (blå) (2) / (farve (blå) (2) + farve (grøn) (6)) = 2/8 Sandsynlighed for at begge bolde er blå P = P_I * P_ (II) = 6/10 * 2/8 = 3/20
Hvad er ligningens ligning, der går igennem (9, -6) og vinkelret på linjen, hvis ligning er y = 1 / 2x + 2?
Y = -2x + 12 Ligningen af en linje med kendt gradient "" m "" og et kendt sæt af koordinater "" (x_1, y_1) "" er givet ved y-y_1 = m (x-x_1) den nødvendige linje er vinkelret på "" y = 1 / 2x + 2 for vinkelrette gradienter m_1m_2 = -1 gradienten af linjen er angivet 1/2 trre kræves gradient 1 / 2xxm_2 = -1 => m_2 = -2, så vi har givet koordinater " "(9, -6) y- -6 = -2 (x-9) y + 6 = -2x + 18 y = -2x + 12
Hvad er ligningens ligning, som går gennem skæringspunktet for linjerne y = x og x + y = 6, og som er vinkelret på linjen med ligning 3x + 6y = 12?
Linjen er y = 2x-3. Find først krydsningspunktet for y = x og x + y = 6 ved hjælp af et system af ligninger: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 og siden y = x: => y = 3 Linjens skæringspunkt er (3,3). Nu skal vi finde en linje, der går gennem punktet (3,3) og er vinkelret på linjen 3x + 6y = 12. For at finde hældningen af linjen 3x + 6y = 12 skal du konvertere den til hældningsaflytningsform: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Så hældningen er -1/2. Hældningerne af vinkelrette linjer er modsatte gensidige, så det betyder, at