Svar:
Udefineret på
Forklaring:
Du er ikke "tilladt" at dividere med 0. Det korrekte navn for dette er, at funktionen er 'undefined'. på det tidspunkt.
Sæt
Så funktionen er udefineret på
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Domæne og rækkevidde
I alfabetet kommer d før r, og du skal indtaste (
Så du overvejer rækkevidden som svarets værdier.
Så vi skal kende værdierne for
Som
Således som
Som
Så rækken er alle værdier mellem negativ uendelighed og positiv uendelighed, men eksklusive 4
I sæt notation har vi:
Grafen af funktionen f (x) = (x + 2) (x + 6) er vist nedenfor. Hvilken erklæring om funktionen er sandt? Funktionen er positiv for alle reelle værdier af x hvor x> -4. Funktionen er negativ for alle reelle værdier af x hvor -6 <x <-2.
Funktionen er negativ for alle reelle værdier af x hvor -6 <x <-2.
Hvad er domænet og rækkevidden af 3x-2 / 5x + 1 og domænet og rækkevidden af invers af funktionen?
Domæne er alle reals undtagen -1/5, hvilket er området for den inverse. Område er alle reals undtagen 3/5, hvilket er domænet for den inverse. f (x) = (3x-2) / (5x + 1) er defineret og reelle værdier for alle x undtagen -1/5, så det er domænet af f og rækkevidden af f ^ -1 Indstilling y = (3x -2) / (5x + 1) og opløsning for x udbytter 5xy + y = 3x-2, så 5xy-3x = -y-2 og derfor (5y-3) x = -y-2, så endelig x = (- y-2) / (5y-3). Vi ser at y! = 3/5. Så rækkevidden af f er alle realiteter undtagen 3/5. Dette er også domænet af f ^ -1.
Hvis funktionen f (x) har et domæne på -2 <= x <= 8 og et område på -4 <= y <= 6 og funktionen g (x) er defineret ved formlen g (x) = 5f ( 2x)), hvad er domænet og rækkevidden af g?
Under. Brug grundlæggende funktionstransformationer til at finde det nye domæne og rækkevidde. 5f (x) betyder, at funktionen strækker sig lodret med en faktor på fem. Derfor vil det nye interval spænde over et interval, der er fem gange større end originalen. I tilfælde af f (2x) påføres en vandret strækning med en halv faktor på funktionen. Derfor halveres ekstremiteterne af domænet. Et voilà!