Svar:
Forklaring:
Overvej fig. 1 og 2
Skematisk kunne vi indsætte et parallelogram ABCD i en cirkel, og forudsat at siderne AB og CD er akkorder af cirklerne i vejen for enten figur 1 eller figur 2.
Forudsætningen om, at siderne AB og CD skal være akkorder af cirklen indebærer, at den indskrevne trapezoid skal være enslig fordi
- trapezoidens diagonaler (
# AC # og# CD # ) er lige fordi #A hat B D = B hat A C = B hatD C = A hat C D # og linjen vinkelret på
# AB # og# CD # passerer gennem midten E bisects disse akkorder (det betyder det# AF = BF # og# CG = GD # og trekanterne dannet af skæringspunktet mellem diagonalerne med baser i# AB # og# CD # er ensomme).
Men da området af trapezoiden er
Og siden faktoren
Ifølge figur 2 med
Derefter
PERIMETER af ligemæssig trapezoid ABCD er lig med 80cm. Længden af linjen AB er 4 gange større end længden af en CD-linje, som er 2/5 længden af linjen BC (eller linjerne, der er ens i længden). Hvad er området med trapezoiden?
Område med trapezium er 320 cm ^ 2. Lad trapeziet være som vist nedenfor: Her, hvis vi antager mindre side CD = a og større side AB = 4a og BC = a / (2/5) = (5a) / 2. Som sådan er BC = AD = (5a) / 2, CD = a og AB = 4a Hermed er omkredsen (5a) / 2xx2 + a + 4a = 10a Men omkredsen er 80 cm. Derfor er a = 8 cm. og to paallel sider vist som a og b er 8 cm. og 32 cm. Nu tegner vi perpendikulærer fra C og D til AB, som danner to identiske retvinklede triangler, hvis hypotenuse er 5 / 2xx8 = 20 cm. og basen er (4xx8-8) / 2 = 12 og dermed er dens højde sqrt (20 ^ 2-12 ^ 2) = sqrt (400-144) = sqrt256 =
Vi har en cirkel med et indskrevet firkant med en indskrevet cirkel med en indskrevet ligesidet trekant. Diameteren af den ydre cirkel er 8 fod. Trianglen materialet koster $ 104,95 en kvadratmeter. Hvad koster det trekantede center?
Omkostningerne ved et trekantet center er $ 1090,67 AC = 8 som en given diameter af en cirkel. Derfor fra den pythagoriske sætning til højre isosceles trekant Delta ABC, AB = 8 / sqrt (2) Så siden GE = 1/2 AB, GE = 4 / sqrt (2) Det er klart, at trekant Delta GHI er ensidig. Punkt E er et center af en cirkel, der omkredser Delta GHI og som sådan er et skæringspunkt mellem medianer, højder og vinkel bisektorer i denne trekant. Det er kendt, at et snitpunkt mellem medianer deler disse medianer i forholdet 2: 1 (for at se Unizor og følg linkene Geometri - Parallellinjer - Mini Theorems 2 - Te
Cirkel A har en radius på 2 og et center på (6, 5). Cirkel B har en radius på 3 og et center på (2, 4). Hvis cirkel B oversættes med <1, 1>, overlapper den cirkel A? Hvis ikke, hvad er den mindste afstand mellem point på begge cirkler?
"overlapper hinanden"> "hvad vi skal gøre her er at sammenligne afstanden mellem døgnene og summen af radiuserne" • "hvis summen af radii"> d "så cirklerne overlapper hinanden" • "hvis summen af radi "<d" og derefter ikke overlappe "" før beregningen d "" kræver vi at finde det nye center "" af B efter den givne oversættelse "" under oversættelsen "<1,1> (2,4) til (2 + 1, 4 + 1) til (3,5) larrcolor (rød) "nyt centrum af B" "for at beregne d bruger"