Antag at en bil kører 248 miles i løbet af et testkørsel på to biler samtidig med at den anden bil rejser 200 miles. Hvis hastigheden på en bil er 12 miles i timen hurtigere end den anden bils hastighed, hvordan finder du begge bilers hastighed?
Den første bil kører med en hastighed på s_1 = 62 mi / time. Den anden bil kører med en hastighed på s_2 = 50 mi / time. Lad os være den tid, bilerne rejser s_1 = 248 / t og s_2 = 200 / t Vi får besked: s_1 = s_2 + 12 Det er 248 / t = 200 / t + 12 rArr 248 = 200 + 12t rArr 12t = 48 rArr t = 4 s_1 = 248/4 = 62 s_2 = 200/4 = 50
Hastigheden af en sejlbåd til fordel for strømmen i en flod er 18 km / h og mod strømmen er det 6 km / h. I hvilken retning skal båden køres for at nå den anden side af floden og hvad vil fartøjets hastighed være?
Lad v_b og v_c henholdsvis repræsentere sejlbådens hastighed i stillt vand og hastighed i strømmen i floden. I betragtning af at sejlbådens hastighed til fordel for strømmen i en flod er 18 km / h og mod strømmen er det 6 km / hr. Vi kan skrive v_b + v_c = 18 ........ (1) v_b-v_c = 6 ........ (2) Tilføjelse (1) og (2) vi får 2v_b = 24 => v_b = 12 "km / hr" Subtrahering (2) fra (2) vi får 2v_c = 12 => v_b = 6 "km / hr" Lad os nu betragte, at theta er vinklen mod strømmen, der skal bibeholdes af båden under krydsning af floden for at nå lig
Vand lækker ud af en inverteret konisk tank med en hastighed på 10.000 cm3 / min samtidig med at vandet pumpes i tanken med konstant hastighed Hvis tanken har en højde på 6m og diameteren øverst er 4m og hvis vandstanden stiger med en hastighed på 20 cm / min, når vandets højde er 2m, hvordan finder du den hastighed, hvormed vandet pumpes i tanken?
Lad V være vandmængden i tanken, i cm ^ 3; lad h være dybden / højden af vandet, i cm; og lad r være radius af overflade af vandet (ovenpå), i cm. Da tanken er en inverteret kegle, er det også vandets masse. Da tanken har en højde på 6 m og en radius på toppen af 2 m, betyder lignende trekanter at frac {h} {r} = frac {6} {2} = 3 således at h = 3r. Volumenet af den inverterede kegle vand er så V = frac {1} {3} pi r ^ {2} h = pi r ^ {3}. Differentier nu begge sider med hensyn til tid t (i minutter) for at få frac {dV} {dt} = 3 pi r ^ {2} cdot frac {dr} {dt} (