Svar:
Område af
Forklaring:
Først bemærk at
Omfanget af en funktion er sæt af alle gyldige udgange ("
Domænet af alle lige linjer (bortset fra de lodrette) er
Derfor domænet af
Også siden
Svar:
Forklaring:
Bare husk at rækken for en lineær funktion er altid alle reelle tal medmindre det er vandret (har ikke
Et eksempel på en lineær funktion med en rækkevidde af ikke alle reelle tal ville være
Jeg håber det hjælper!
Grafen af funktionen f (x) = (x + 2) (x + 6) er vist nedenfor. Hvilken erklæring om funktionen er sandt? Funktionen er positiv for alle reelle værdier af x hvor x> -4. Funktionen er negativ for alle reelle værdier af x hvor -6 <x <-2.
Funktionen er negativ for alle reelle værdier af x hvor -6 <x <-2.
Hvad er domænet og rækkevidden af 3x-2 / 5x + 1 og domænet og rækkevidden af invers af funktionen?
Domæne er alle reals undtagen -1/5, hvilket er området for den inverse. Område er alle reals undtagen 3/5, hvilket er domænet for den inverse. f (x) = (3x-2) / (5x + 1) er defineret og reelle værdier for alle x undtagen -1/5, så det er domænet af f og rækkevidden af f ^ -1 Indstilling y = (3x -2) / (5x + 1) og opløsning for x udbytter 5xy + y = 3x-2, så 5xy-3x = -y-2 og derfor (5y-3) x = -y-2, så endelig x = (- y-2) / (5y-3). Vi ser at y! = 3/5. Så rækkevidden af f er alle realiteter undtagen 3/5. Dette er også domænet af f ^ -1.
Hvis funktionen f (x) har et domæne på -2 <= x <= 8 og et område på -4 <= y <= 6 og funktionen g (x) er defineret ved formlen g (x) = 5f ( 2x)), hvad er domænet og rækkevidden af g?
Under. Brug grundlæggende funktionstransformationer til at finde det nye domæne og rækkevidde. 5f (x) betyder, at funktionen strækker sig lodret med en faktor på fem. Derfor vil det nye interval spænde over et interval, der er fem gange større end originalen. I tilfælde af f (2x) påføres en vandret strækning med en halv faktor på funktionen. Derfor halveres ekstremiteterne af domænet. Et voilà!